Suppr超能文献

基于细胞膜结构启发的活性 Ni-N-O 界面用于增强氧气析出反应。

Cytomembrane-Structure-Inspired Active Ni-N-O Interface for Enhanced Oxygen Evolution Reaction.

机构信息

State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China.

Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China.

出版信息

Adv Mater. 2018 Sep;30(39):e1803367. doi: 10.1002/adma.201803367. Epub 2018 Aug 22.

Abstract

Surface/interface design is one of the most significant and promising motivations to develop high-performance catalysts for electrolytic water splitting. Here, the nature of cytomembrane having the most effective and functional surface structure is mimicked to fabricate a new configuration of Ni-N-O porous interface nanoparticles (NiNO INPs) with strongly interacting nanointerface between the Ni N and NiO domains, for enhancing the electrocatalytic oxygen evolution reaction (OER) performance. The combination of transmission electron microscopy and electrochemical investigations, tracking the correlation between microstructure evolution and catalytic activity, demonstrate the strongly coupled nanointerface for an approximately sixfold improvement of electrolytic efficiency. Density functional theory simulates the electrocatalytic process with a maximum of 85% reduction of the energy barrier. Further investigations find that the real active site for the OER in the NiNO INPs is the strongly coupled Ni-N-O nanointerface, not the derived amorphous hydroxide, during the OER process. The determination of the correlation of constructed nanointerface with catalytic properties suggests a significant strategy toward the rational design of catalysts for efficient water electrocatalysis.

摘要

表面/界面设计是开发高效电解水析催化剂的最具意义和前景的动机之一。在这里,模仿细胞膜的有效且功能化的表面结构,制造了具有 Ni-N-O 多孔界面纳米粒子(NiNO INPs)的新型配置,该纳米粒子在 NiN 和 NiO 域之间具有强烈相互作用的纳米界面,从而增强电催化氧气析出反应(OER)性能。透射电子显微镜和电化学研究的结合,跟踪微结构演变和催化活性之间的相关性,表明强耦合纳米界面可使电解效率提高约六倍。密度泛函理论模拟了电催化过程,其能量势垒最大可降低 85%。进一步的研究发现,在 OER 过程中,NiNO INPs 中 OER 的真正活性位点是强耦合的 Ni-N-O 纳米界面,而不是衍生的无定形氢氧化物。构建的纳米界面与催化性能的相关性的确定表明,这是一种用于高效水电解催化剂合理设计的重要策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验