Suppr超能文献

原发性肿瘤的影像组学作为提高F-FDG-PET检测子宫内膜癌淋巴结转移敏感性的工具。

Radiomics of the primary tumour as a tool to improve F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer.

作者信息

De Bernardi Elisabetta, Buda Alessandro, Guerra Luca, Vicini Debora, Elisei Federica, Landoni Claudio, Fruscio Robert, Messa Cristina, Crivellaro Cinzia

机构信息

Medicine and Surgery Department, University of Milano Bicocca, via Cadore 48, 20900, Monza, MB, Italy.

Clinic of Obstetrics and Gynaecology, San Gerardo Hospital, via Pergolesi 33, 20900, Monza, MB, Italy.

出版信息

EJNMMI Res. 2018 Aug 22;8(1):86. doi: 10.1186/s13550-018-0441-1.

Abstract

BACKGROUND

A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours. On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases visual detection results and radiomic analysis was also assessed.

RESULTS

Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2, respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model (sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94% and 67% on DB1 and of 89% and 75% on DB2, respectively.

CONCLUSIONS

The computation of imaging features on the primary tumour increases nodal staging detection sensitivity in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a confirmation on larger cohort studies.

摘要

背景

将放射组学方法应用于18F-FDG PET子宫内膜癌,以研究在原发肿瘤上计算的影像特征是否能提高淋巴结转移检测的敏感性。回顾性分析了115例经组织学证实为子宫内膜癌且术前行18F-FDG PET/CT检查的女性患者。在肿瘤轮廓内计算SUV、MTV、TLG、几何形状、直方图和纹理特征。在第一组86例患者(数据库1,DB1)中,通过曼-惠特尼检验计算与淋巴结转移的单变量相关性,并建立神经网络多变量模型。在20次训练中采用留一法对单变量和多变量模型进行评估,并在第二组29例患者(数据库2,DB2)中进行验证。还评估了一个结合淋巴结转移视觉检测结果和放射组学分析的统一框架。

结果

在DB1中,淋巴结视觉检测的敏感性和特异性分别为50%和99%,在DB2中分别为33%和95%。在原发肿瘤上计算的一个独特的异质性特征(灰度大小区域矩阵的区域百分比,GLSZM ZP)比任何其他特征或多变量模型都能更好地预测淋巴结转移(在DB1中的敏感性和特异性分别为75%和81%,在DB2中分别为89%和80%)。事实上,有淋巴结转移的肿瘤通常具有较低的GLSZM ZP值,即同时存在高摄取和低摄取区域。在统一框架中将视觉检测和GLSZM ZP值相结合,在DB1中的敏感性和特异性分别为94%和67%,在DB2中分别为89%和75%。

结论

在原发肿瘤上计算影像特征可提高18F-FDG PET中淋巴结分期检测的敏感性,可考虑用于更好地对患者进行分层以选择治疗方案。结果需要在更大规模的队列研究中得到证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418c/6104464/0b2885ce61dd/13550_2018_441_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验