Division of Mathematics, University of Dundee, Dundee, DD1 4HN, Scotland, UK.
Bull Math Biol. 2018 Oct;80(10):2600-2632. doi: 10.1007/s11538-018-0477-4. Epub 2018 Aug 22.
Tumours consist of heterogeneous populations of cells. The sub-populations can have different features, including cell motility, proliferation and metastatic potential. The interactions between clonal sub-populations are complex, from stable coexistence to dominant behaviours. The cell-cell interactions, i.e. attraction, repulsion and alignment, processes critical in cancer invasion and metastasis, can be influenced by the mutation of cancer cells. In this study, we develop a mathematical model describing cancer cell invasion and movement for two polarised cancer cell populations with different levels of mutation. We consider a system of non-local hyperbolic equations that incorporate cell-cell interactions in the speed and the turning behaviour of cancer cells, and take a formal parabolic limit to transform this model into a non-local parabolic model. We then investigate the possibility of aggregations to form, and perform numerical simulations for both hyperbolic and parabolic models, comparing the patterns obtained for these models.
肿瘤由异质细胞群体组成。这些亚群可能具有不同的特征,包括细胞迁移性、增殖和转移潜能。克隆亚群之间的相互作用非常复杂,从稳定共存到主导行为都有。细胞间的相互作用,如吸引、排斥和对齐,在癌症侵袭和转移中至关重要,这些过程可能会受到癌细胞突变的影响。在这项研究中,我们开发了一个数学模型,用于描述具有不同突变水平的两个极化癌细胞群体的癌症细胞侵袭和运动。我们考虑了一个非局部双曲型方程组系统,该系统将细胞间的相互作用纳入了癌细胞的速度和转向行为中,并采用形式的抛物极限将该模型转化为非局部抛物型模型。然后,我们研究了形成聚集的可能性,并对双曲型和抛物型模型进行了数值模拟,比较了这些模型得到的模式。