Suppr超能文献

优化多类散点图中类别可分离性感知的颜色分配

Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots.

作者信息

Wang Yunhai, Chen Xin, Ge Tong, Bao Chen, Sedlmair Michael, Fu Chi-Wing, Deussen Oliver, Chen Baoquan

出版信息

IEEE Trans Vis Comput Graph. 2018 Aug 20. doi: 10.1109/TVCG.2018.2864912.

Abstract

Appropriate choice of colors significantly aids viewers in understanding the structures in multiclass scatterplots and becomes more important with a growing number of data points and groups. An appropriate color mapping is also an important parameter for the creation of an aesthetically pleasing scatterplot. Currently, users of visualization software routinely rely on color mappings that have been pre-defined by the software. A default color mapping, however, cannot ensure an optimal perceptual separability between groups, and sometimes may even lead to a misinterpretation of the data. In this paper, we present an effective approach for color assignment based on a set of given colors that is designed to optimize the perception of scatterplots. Our approach takes into account the spatial relationships, density, degree of overlap between point clusters, and also the background color. For this purpose, we use a genetic algorithm that is able to efficiently find good color assignments. We implemented an interactive color assignment system with three extensions of the basic method that incorporates top K suggestions, user-defined color subsets, and classes of interest for the optimization. To demonstrate the effectiveness of our assignment technique, we conducted a numerical study and a controlled user study to compare our approach with default color assignments; our findings were verified by two expert studies. The results show that our approach is able to support users in distinguishing cluster numbers faster and more precisely than default assignment methods.

摘要

合适的颜色选择能极大地帮助观众理解多类散点图中的结构,并且随着数据点和组的数量增加,其重要性也日益凸显。合适的颜色映射也是创建美观散点图的一个重要参数。目前,可视化软件的用户通常依赖软件预先定义的颜色映射。然而,默认的颜色映射无法确保组之间具有最佳的感知可分离性,有时甚至可能导致对数据的误解。在本文中,我们提出了一种基于一组给定颜色的有效颜色分配方法,旨在优化散点图的感知效果。我们的方法考虑了空间关系、密度、点簇之间的重叠程度以及背景颜色。为此,我们使用了一种能够高效找到良好颜色分配的遗传算法。我们实现了一个交互式颜色分配系统,该系统对基本方法进行了三种扩展,包括前K个建议、用户定义的颜色子集以及用于优化的感兴趣类。为了证明我们的分配技术的有效性,我们进行了一项数值研究和一项受控用户研究,将我们的方法与默认颜色分配进行比较;我们的发现通过两项专家研究得到了验证。结果表明,与默认分配方法相比,我们的方法能够支持用户更快、更准确地辨别簇的数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验