Suppr超能文献

类别色图优化及其可视化案例研究。

Categorical Colormap Optimization with Visualization Case Studies.

出版信息

IEEE Trans Vis Comput Graph. 2017 Jan;23(1):871-880. doi: 10.1109/TVCG.2016.2599214.

Abstract

Mapping a set of categorical values to different colors is an elementary technique in data visualization. Users of visualization software routinely rely on the default colormaps provided by a system, or colormaps suggested by software such as ColorBrewer. In practice, users often have to select a set of colors in a semantically meaningful way (e.g., based on conventions, color metaphors, and logological associations), and consequently would like to ensure their perceptual differentiation is optimized. In this paper, we present an algorithmic approach for maximizing the perceptual distances among a set of given colors. We address two technical problems in optimization, i.e., (i) the phenomena of local maxima that halt the optimization too soon, and (ii) the arbitrary reassignment of colors that leads to the loss of the original semantic association. We paid particular attention to different types of constraints that users may wish to impose during the optimization process. To demonstrate the effectiveness of this work, we tested this technique in two case studies. To reach out to a wider range of users, we also developed a web application called Colourmap Hospital.

摘要

将一组类别值映射到不同的颜色是数据可视化中的基本技术。可视化软件的用户通常依赖于系统提供的默认色图,或者依赖于 ColorBrewer 等软件建议的色图。在实践中,用户通常必须以语义上有意义的方式选择一组颜色(例如,基于约定、颜色隐喻和逻辑联想),因此希望确保他们的感知差异得到优化。在本文中,我们提出了一种算法方法来最大化给定颜色集之间的感知距离。我们解决了优化中的两个技术问题,即(i)过早停止优化的局部最大值现象,以及(ii)任意重新分配颜色导致原始语义关联丢失的问题。我们特别关注用户在优化过程中可能希望施加的不同类型的约束。为了展示这项工作的有效性,我们在两个案例研究中测试了该技术。为了吸引更多的用户,我们还开发了一个名为 Colourmap Hospital 的网络应用程序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验