IEEE Trans Cybern. 2019 Dec;49(12):4229-4242. doi: 10.1109/TCYB.2018.2861211. Epub 2018 Aug 21.
We present a novel alternative convergence theory of the fuzzy C -means (FCM) clustering algorithm with a super-class of the so-called "distance like functions" which emerged from the earlier attempts of unifying the theories of center-based clustering methods. This super-class does not assume the existence of double derivative of the distance measure with respect to the coordinate of the cluster representative (first coordinate in this formulation). The convergence result does not require the separability of the distance measures. Moreover, it provides us with a stronger convergence property comparable (same to be precise, but in terms of the generalized distance measure) to that of the classical FCM with squared Euclidean distance. The crux of the convergence analysis lies in the development of a fundamentally novel mathematical proof of the continuity of the clustering operator even in absence of the closed form upgrading rule, without necessitating the separability and double differentiability of the distance function and still providing us with a convergence result comparable to that of the classical FCM. The implication of our novel proof technique goes way beyond the realm of FCM and provides a general setup for convergence analysis of the similar iterative algorithms.
我们提出了一种新的模糊 C -均值(FCM)聚类算法的收敛性理论,它属于所谓的“距离类函数”的超类,这些函数源于早期统一基于中心的聚类方法理论的尝试。这个超类不假设距离度量相对于聚类代表坐标(在这种表述中是第一个坐标)的二阶导数的存在。收敛结果不要求距离度量的可分离性。此外,它为我们提供了一个更强的收敛性质,可以与经典的平方欧几里得距离的 FCM 相媲美(确切地说是相同的,但在广义距离度量方面)。收敛分析的关键在于开发一种基本的新颖的聚类算子连续性的数学证明,即使在没有封闭形式升级规则的情况下,也不需要距离函数的可分离性和二阶可微性,并且仍然为我们提供与经典 FCM 相媲美的收敛结果。我们的新证明技术的意义远远超出了 FCM 的范围,为类似的迭代算法的收敛性分析提供了一个通用的设置。