Di Carlo Rasi Dario, Hendriks Koen H, Wienk Martijn M, Janssen René A J
Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ, Eindhoven, The Netherlands.
Adv Mater. 2018 Aug 23:e1803836. doi: 10.1002/adma.201803836.
A monolithic two-terminal solution-processed quadruple junction polymer solar cell in an n-i-p (inverted) configuration with four complementary polymer:fullerene active bulk-heterojunction layers is presented. The subcells possess different optical bandgaps ranging from 1.90 to 1.13 eV. Optical modeling using the transfer matrix formalism enables prediction of the fraction of absorbed photons from sunlight in each subcell and determine the optimal combination of layer thicknesses. The quadruple junction cell features an open-circuit voltage of 2.45 V and has a power conversion efficiency of 7.6%, only slightly less than the modeled value of 8.2%. The external quantum efficiency spectrum, determined with appropriate light and voltage bias conditions, exhibits in general an excellent agreement with modeled spectrum. The device performance is presently limited by bimolecular recombination, which prevents using thick photoactive layers that could absorb light more efficiently.
本文展示了一种采用溶液法制备的单片式两终端四结聚合物太阳能电池,其结构为n-i-p(倒置)结构,具有四个互补的聚合物:富勒烯活性体异质结层。子电池具有不同的光学带隙,范围从1.90到1.13 eV。使用转移矩阵形式的光学建模能够预测每个子电池中吸收的太阳光光子比例,并确定层厚度的最佳组合。四结电池的开路电压为2.45 V,功率转换效率为7.6%,仅略低于建模值8.2%。在适当的光照和电压偏置条件下测定的外量子效率光谱总体上与建模光谱表现出极好的一致性。目前该器件的性能受到双分子复合的限制,这阻碍了使用能够更有效地吸收光的厚光活性层。