The Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, United States.
Neural Netw. 2018 Nov;107:12-22. doi: 10.1016/j.neunet.2018.04.020. Epub 2018 Aug 9.
Representation learning plays an important role for building effective deep neural network models. Deep generative probabilistic models have shown to be efficient in the data representation learning task which is usually carried out in an unsupervised fashion. Throughout the past decade, there has been almost exclusive focus on the learning algorithms to improve representation capability of the generative models. However, effective data representation requires improvement in both learning algorithm and architecture of the generative models. Therefore, improvement to the neural architecture is critical for improved data representation capability of deep generative models. Furthermore, the prevailing class of deep generative models such as deep belief network (DBN), deep Boltzman machine (DBM) and deep sigmoid belief network (DSBN) are inherently unidirectional and lack recurrent connections ubiquitous in the biological neuronal structures. Introduction of recurrent connections may offer further improvement in data representation learning performance to the deep generative models. Consequently, for the first time in literature, this work proposes a deep recurrent generative model known as deep simultaneous recurrent belief network (D-SRBN) to efficiently learn representations from unlabeled data. Experimentation on four benchmark datasets: MNIST, Caltech 101 Silhouettes, OCR letters and Omniglot show that the proposed D-SRBN model achieves superior representation learning performance while utilizing less computing resources when compared to the four state-of-the-art generative models such as deep belief network (DBN), DBM, DSBN and VAE (variational auto-encoder).
表示学习对于构建有效的深度神经网络模型起着重要作用。深度生成概率模型已被证明在数据表示学习任务中非常有效,通常以无监督的方式进行。在过去的十年中,几乎完全专注于学习算法,以提高生成模型的表示能力。然而,有效的数据表示需要改进生成模型的学习算法和架构。因此,神经架构的改进对于提高深度生成模型的数据表示能力至关重要。此外,目前流行的深度生成模型类,如深度置信网络 (DBN)、深度玻尔兹曼机 (DBM) 和深度 sigmoid 置信网络 (DSBN),本质上是单向的,缺乏生物神经元结构中普遍存在的递归连接。引入递归连接可以进一步提高深度生成模型的数据表示学习性能。因此,本文首次提出了一种称为深度同时递归置信网络 (D-SRBN) 的深度递归生成模型,用于从无标签数据中高效学习表示。在 MNIST、Caltech 101 Silhouettes、OCR 字母和 Omniglot 四个基准数据集上的实验表明,与 DBN、DBM、DSBN 和 VAE(变分自动编码器)等四种最先进的生成模型相比,所提出的 D-SRBN 模型在利用较少计算资源的同时实现了卓越的表示学习性能。