Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
Institute for Computational and Imaging Science in Cardiovascular Medicine Charité, Universitätsmedizin Berlin, 13353, Berlin, Germany.
Arch Toxicol. 2018 Oct;92(10):3191-3205. doi: 10.1007/s00204-018-2295-8. Epub 2018 Aug 24.
Propofol is the most frequently used intravenous anesthetic for induction and maintenance of anesthesia. Propofol acts first and formost as a GABA-agonist, but effects on other neuronal receptors and voltage-gated ion channels have been described. Besides its direct effect on neurotransmission, propofol-dependent impairment of mitochondrial function in neurons has been suggested to be responsible for neurotoxicity and postoperative brain dysfunction. To clarify the potential neurotoxic effect in more detail, we investigated the effects of propofol on neuronal energy metabolism of hippocampal slices of the stratum pyramidale of area CA3 at different activity states. We combined oxygen-measurements, electrophysiology and flavin adenine dinucleotide (FAD)-imaging with computational modeling to uncover molecular targets in mitochondrial energy metabolism that are directly inhibited by propofol. We found that high concentrations of propofol (100 µM) significantly decrease population spikes, paired pulse ratio, the cerebral metabolic rate of oxygen consumption (CMRO), frequency and power of gamma oscillations and increase FAD-oxidation. Model-based simulation of mitochondrial FAD redox state at inhibition of different respiratory chain (RC) complexes and the pyruvate-dehydrogenase show that the alterations in FAD-autofluorescence during propofol administration can be explained with a strong direct inhibition of the complex II (cxII) of the RC. While this inhibition may not affect ATP availability under normal conditions, it may have an impact at high energy demand. Our data support the notion that propofol may lead to neurotoxicity and neuronal dysfunction by directly affecting the energy metabolism in neurons.
异丙酚是诱导和维持全身麻醉最常用的静脉麻醉药。异丙酚首先作为 GABA 激动剂起作用,但也描述了其对其他神经元受体和电压门控离子通道的作用。除了对神经递质传递的直接影响外,还提出异丙酚依赖性神经元线粒体功能障碍是神经毒性和术后脑功能障碍的原因。为了更详细地阐明潜在的神经毒性作用,我们研究了异丙酚对 CA3 区海马脑片不同活动状态下锥体层神经元能量代谢的影响。我们结合氧测量、电生理学和黄素腺嘌呤二核苷酸(FAD)成像与计算模型,以揭示直接被异丙酚抑制的线粒体能量代谢中的分子靶点。我们发现高浓度异丙酚(100 μM)显著降低群体峰、成对脉冲比、脑氧消耗代谢率(CMRO)、γ 振荡的频率和功率,并增加 FAD 氧化。基于模型的对不同呼吸链(RC)复合物和丙酮酸脱氢酶抑制时线粒体 FAD 氧化还原状态的模拟表明,在异丙酚给药期间 FAD 自发荧光的变化可以用 RC 复合物 II(cxII)的强烈直接抑制来解释。虽然这种抑制在正常情况下可能不会影响 ATP 的可用性,但在高能量需求时可能会产生影响。我们的数据支持这样一种观点,即异丙酚可能通过直接影响神经元的能量代谢而导致神经毒性和神经元功能障碍。