Departamento de Economía Aplicada (Matemáticas), Universidad de Málaga, Campus El Ejido, 29071, Málaga, Spain.
Departamento de Economía y Administración de Empresas, Universidad de Málaga, Campus El Ejido, 29071, Málaga, Spain.
J Environ Manage. 2018 Nov 15;226:484-492. doi: 10.1016/j.jenvman.2018.08.067. Epub 2018 Aug 23.
Eco-efficiency assessment is a useful tool for improving the sustainability of wastewater treatment plants (WWTPs). However, it is a complex task that requires the integration of several performance indicators into a single index. Data envelopment analysis (DEA) is established as a highly effective methodology for achieving this as it permits the integration of the service value, resource consumption and environmental impact variables as the desirable outputs, inputs and undesirable outputs, respectively. However, traditional DEA models omit uncertainties in the data that are likely to result in biased conclusions. This study pioneers the assessment of the eco-efficiency of WWTPs while accounting for the data uncertainty and integrating the greenhouse gas emissions as an undesirable output. The DEA-tolerance model was applied to compute the eco-efficiency scores for 729 scenarios for each facility tested for identifying the best- and worst-case scenarios. The WWTPs were also ranked based on their eco-efficiency scores. The results demonstrated the importance of integrating data uncertainty in eco-efficiency assessments; the performances of the WWTPs change notably based on the evaluated set of scenarios. The proposed methodological approach provides a reliable and robust framework for supporting decision-making processes.
生态效率评估是提高废水处理厂(WWTP)可持续性的有用工具。然而,这是一项复杂的任务,需要将多个绩效指标整合到一个单一的指数中。数据包络分析(DEA)作为一种非常有效的方法被建立起来,因为它允许将服务价值、资源消耗和环境影响变量分别作为理想输出、输入和不良输出进行整合。然而,传统的 DEA 模型忽略了数据中的不确定性,这可能导致有偏差的结论。本研究在考虑数据不确定性的同时,将温室气体排放作为不良输出,率先评估 WWTP 的生态效率,并为每个测试设施的 729 种情况计算生态效率得分,以确定最佳和最差情况。还根据生态效率得分对 WWTP 进行了排名。结果表明,在生态效率评估中纳入数据不确定性的重要性;WWTP 的性能根据评估的情景集发生了显著变化。所提出的方法学方法为支持决策过程提供了一个可靠和稳健的框架。