Suppr超能文献

重复力、可重复性和一致性的马体型数据及其与弗朗什-蒙塔涅种公马线性描述的体貌特征的关系。

Repeatability, reproducibility and consistency of horse shape data and its association with linearly described conformation traits in Franches-Montagnes stallions.

机构信息

Agroscope-Swiss National Stud Farm, Avenches, Switzerland.

Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

出版信息

PLoS One. 2018 Aug 27;13(8):e0202931. doi: 10.1371/journal.pone.0202931. eCollection 2018.

Abstract

Linear description (LD) of conformation traits was introduced in horse breeding to minimise subjectivity in scoring. However, recent studies have shown that LD traits show essentially the same problems as traditionally scored traits, such as data converging around the mean value with very small standard deviations. To improve the assessment of conformation traits of horses, we investigated the application of the recently described horse shape space model based upon 403 digitised photographs of 243 Franches-Montagnes (FM) stallions and extracted joint angles based on specific landmark triplets. Repeatability, reproducibility and consistency of the resulting shape data and joint angles were assessed with Procrustes ANOVA (Rep) and intra-class correlation coefficients (ICC). Furthermore, we developed a subjective score to classify the posture of the horses on each photograph. We derived relative warp scores (PCs) based upon the digitised photos conducting a principal component analysis (PCA). The PCs of the shapes and joint angles were compared to the posture scores and to the linear description data using linear mixed effect models including significant posture scores as random factors. The digitisation process was highly repeatable and reproducible for the shape (Rep = 0.72-0.99, ICC = 0.99). The consistency of the shape was limited by the age and posture (p < 0.05). The angle measurements were highly repeatable within one digitiser. Between digitisers, we found a higher variability of ICC values (ICC = 0.054-0.92), indicating digitising error in specific landmarks (e.g. shoulder point). The posture scores were highly repeatable (Fleiss' kappa = 0.713-0.857). We identified significant associations (p(X2) < 0.05) with traits describing the withers height, shoulder length and incline, overall leg conformation, walk and trot step length. The horse shape data and angles provide additional information to explore the morphology of horses and therefore can be applied to improve the knowledge of the genetic architecture of LD traits.

摘要

线性描述(LD)的 conformation 特征被引入马的育种中,以减少评分的主观性。然而,最近的研究表明,LD 特征基本上存在与传统评分特征相同的问题,例如数据集中在平均值附近,标准差非常小。为了提高对马 conformation 特征的评估,我们研究了基于 243 头 Franche-Montagnes(FM)种马的 403 张数字化照片的最近描述的马形状空间模型的应用,并基于特定的地标三元组提取关节角度。使用 Procrustes ANOVA(Rep)和组内相关系数(ICC)评估了形状数据和关节角度的可重复性、可再现性和一致性。此外,我们开发了一个主观评分来对每张照片上的马的姿势进行分类。我们从数字化照片中提取关节角度并基于特定的地标三元组提取关节角度。我们基于数字化照片进行了主成分分析(PCA),得出了相对扭曲分数(PCs)。我们将形状和关节角度的 PCs 与姿势分数以及线性描述数据进行了比较,使用包括显著姿势分数作为随机因素的线性混合效应模型进行了比较。数字化过程对形状具有高度的可重复性和可再现性(Rep = 0.72-0.99,ICC = 0.99)。形状的一致性受到年龄和姿势的限制(p < 0.05)。一个数字化器内的角度测量具有高度的可重复性。在两个数字化器之间,我们发现 ICC 值的变异性更高(ICC = 0.054-0.92),这表明在特定地标处存在数字化错误(例如肩点)。姿势分数具有高度的可重复性(Fleiss' kappa = 0.713-0.857)。我们确定了与描述肩高、肩部长度和倾斜度、整体腿部形态、行走和小跑步长的性状具有显著关联(p(X2)<0.05)。马的形状数据和角度提供了额外的信息,可以用来探索马的形态学,因此可以应用于提高对 LD 特征遗传结构的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2048/6110498/1f98a1d64c31/pone.0202931.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验