National Laboratory of Radar Signal Processing, Xidian University, Xian 710071, China.
Center of Communication and Tracking Telemetering Command, Chongqing University, Chongqing 400044, China.
Sensors (Basel). 2018 Aug 26;18(9):2814. doi: 10.3390/s18092814.
The inverse synthetic aperture radar (ISAR) imaging for targets with complex motions has always been a challenging task due to the time-varying Doppler parameter, especially at the low signal-to-noise ratio (SNR) condition. In this paper, an efficient ISAR imaging algorithm for maneuvering targets based on a noise-resistance bilinear coherent integration is developed without the parameter estimation. First, the received signals of the ISAR in a range bin are modelled as a multicomponent quadratic frequency-modulated (QFM) signal after the translational motion compensation. Second, a novel quasi-time-frequency representation noise-resistance bilinear Radon-cubic phase function (CPF)-Fourier transform (RCFT) is proposed, which is based on the coherent integration of the energy of auto-terms along the slope line trajectory. In doing so, the RCFT also effectively suppresses the cross-terms and spurious peaks interference at no expense of the time-frequency resolution loss. Third, the cross-range positions of target's scatters in ISAR image are obtained via a simple maximization projection from the RCFT result to the Doppler centroid axis, and the final high-resolution ISAR image is thus produced by regrouping all the range-Doppler frequency centroids. Compared with the existing time-frequency analysis-based and parameter estimation-based ISAR imaging algorithms, the proposed method presents the following features: (1) Better cross-term interference suppression at no time-frequency resolution loss; (2) computationally efficient without estimating the parameters of each scatters; (3) higher signal processing gain because of 2-D coherent integration realization and its bilinear function feature. The simulation results are provided to demonstrate the performance of the proposed method.
基于抗噪双线性相干积分的机动目标逆合成孔径雷达(ISAR)成像算法,无需参数估计
针对时变多普勒参数,特别是在低信噪比(SNR)条件下,具有复杂运动的目标的逆合成孔径雷达(ISAR)成像一直是一项具有挑战性的任务。本文提出了一种基于抗噪双线性相干积分的机动目标高效 ISAR 成像算法,无需参数估计。首先,在平移运动补偿后,将 ISAR 中一个距离单元内的接收信号建模为多分量二次调频(QFM)信号。其次,提出了一种新颖的基于相干积分能量的抗噪双线性 Radon-三次相位函数(CPF)-傅里叶变换(RCFT),该方法基于沿斜率线轨迹的自项能量相干积分。这样,RCFT 还可以有效地抑制交叉项和杂散峰干扰,而不会损失时频分辨率。然后,通过从 RCFT 结果到多普勒中心轴的简单最大化投影,获得 ISAR 图像中目标散射点的横向位置,最后通过重新分组所有距离-多普勒频率中心来生成最终的高分辨率 ISAR 图像。与现有的时频分析和参数估计的 ISAR 成像算法相比,所提出的方法具有以下特点:(1)在不损失时频分辨率的情况下,具有更好的交叉项干扰抑制能力;(2)无需估计每个散射点的参数,计算效率高;(3)由于实现二维相干积分及其双线性函数特性,具有更高的信号处理增益。仿真结果验证了所提出方法的性能。