Suppr超能文献

基于准时频分析双线性相干算法的复杂运动目标高效逆合成孔径雷达成像。

An Efficient ISAR Imaging of Targets with Complex Motions Based on a Quasi-Time-Frequency Analysis Bilinear Coherent Algorithm.

机构信息

National Laboratory of Radar Signal Processing, Xidian University, Xian 710071, China.

Center of Communication and Tracking Telemetering Command, Chongqing University, Chongqing 400044, China.

出版信息

Sensors (Basel). 2018 Aug 26;18(9):2814. doi: 10.3390/s18092814.

Abstract

The inverse synthetic aperture radar (ISAR) imaging for targets with complex motions has always been a challenging task due to the time-varying Doppler parameter, especially at the low signal-to-noise ratio (SNR) condition. In this paper, an efficient ISAR imaging algorithm for maneuvering targets based on a noise-resistance bilinear coherent integration is developed without the parameter estimation. First, the received signals of the ISAR in a range bin are modelled as a multicomponent quadratic frequency-modulated (QFM) signal after the translational motion compensation. Second, a novel quasi-time-frequency representation noise-resistance bilinear Radon-cubic phase function (CPF)-Fourier transform (RCFT) is proposed, which is based on the coherent integration of the energy of auto-terms along the slope line trajectory. In doing so, the RCFT also effectively suppresses the cross-terms and spurious peaks interference at no expense of the time-frequency resolution loss. Third, the cross-range positions of target's scatters in ISAR image are obtained via a simple maximization projection from the RCFT result to the Doppler centroid axis, and the final high-resolution ISAR image is thus produced by regrouping all the range-Doppler frequency centroids. Compared with the existing time-frequency analysis-based and parameter estimation-based ISAR imaging algorithms, the proposed method presents the following features: (1) Better cross-term interference suppression at no time-frequency resolution loss; (2) computationally efficient without estimating the parameters of each scatters; (3) higher signal processing gain because of 2-D coherent integration realization and its bilinear function feature. The simulation results are provided to demonstrate the performance of the proposed method.

摘要

基于抗噪双线性相干积分的机动目标逆合成孔径雷达(ISAR)成像算法,无需参数估计

针对时变多普勒参数,特别是在低信噪比(SNR)条件下,具有复杂运动的目标的逆合成孔径雷达(ISAR)成像一直是一项具有挑战性的任务。本文提出了一种基于抗噪双线性相干积分的机动目标高效 ISAR 成像算法,无需参数估计。首先,在平移运动补偿后,将 ISAR 中一个距离单元内的接收信号建模为多分量二次调频(QFM)信号。其次,提出了一种新颖的基于相干积分能量的抗噪双线性 Radon-三次相位函数(CPF)-傅里叶变换(RCFT),该方法基于沿斜率线轨迹的自项能量相干积分。这样,RCFT 还可以有效地抑制交叉项和杂散峰干扰,而不会损失时频分辨率。然后,通过从 RCFT 结果到多普勒中心轴的简单最大化投影,获得 ISAR 图像中目标散射点的横向位置,最后通过重新分组所有距离-多普勒频率中心来生成最终的高分辨率 ISAR 图像。与现有的时频分析和参数估计的 ISAR 成像算法相比,所提出的方法具有以下特点:(1)在不损失时频分辨率的情况下,具有更好的交叉项干扰抑制能力;(2)无需估计每个散射点的参数,计算效率高;(3)由于实现二维相干积分及其双线性函数特性,具有更高的信号处理增益。仿真结果验证了所提出方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bda/6164856/5077ccead470/sensors-18-02814-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验