Suppr超能文献

大小和拓扑结构调节蛋白质折叠中的挫折效应。

Size and topology modulate the effects of frustration in protein folding.

机构信息

Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.

Department of Chemistry, Rice University, Houston, TX 77005.

出版信息

Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9234-9239. doi: 10.1073/pnas.1801406115. Epub 2018 Aug 27.

Abstract

The presence of conflicting interactions, or frustration, determines how fast biomolecules can explore their configurational landscapes. Recent experiments have provided cases of systems with slow reconfiguration dynamics, perhaps arising from frustration. While it is well known that protein folding speed and mechanism are strongly affected by the protein native structure, it is still unknown how the response to frustration is modulated by the protein topology. We explore the effects of nonnative interactions in the reconfigurational and folding dynamics of proteins with different sizes and topologies. We find that structural correlations related to the folded state size and topology play an important role in determining the folding kinetics of proteins that otherwise have the same amount of nonnative interactions. In particular, we find that the reconfiguration dynamics of α-helical proteins are more susceptible to frustration than β-sheet proteins of the same size. Our results may explain recent experimental findings and suggest that attempts to measure the degree of frustration due to nonnative interactions might be more successful with α-helical proteins.

摘要

存在冲突的相互作用或干扰会决定生物分子在多大程度上能快速探索它们的构象景观。最近的实验提供了一些系统的例子,这些系统的重新配置动力学较慢,可能是由于干扰。虽然众所周知,蛋白质折叠的速度和机制受到蛋白质天然结构的强烈影响,但仍不清楚对干扰的反应是如何被蛋白质拓扑结构调节的。我们研究了不同大小和拓扑结构的蛋白质中非天然相互作用对重新配置和折叠动力学的影响。我们发现,与折叠状态大小和拓扑结构相关的结构相关性在确定具有相同数量非天然相互作用的蛋白质的折叠动力学方面起着重要作用。特别是,我们发现α-螺旋蛋白质的重新配置动力学比相同大小的β-折叠蛋白质更容易受到干扰。我们的研究结果可能解释了最近的实验发现,并表明尝试通过α-螺旋蛋白质测量由于非天然相互作用而产生的干扰程度可能会更加成功。

相似文献

1
Size and topology modulate the effects of frustration in protein folding.大小和拓扑结构调节蛋白质折叠中的挫折效应。
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9234-9239. doi: 10.1073/pnas.1801406115. Epub 2018 Aug 27.
7
Structural origin of slow diffusion in protein folding.蛋白质折叠中慢扩散的结构起源。
Science. 2015 Sep 25;349(6255):1504-10. doi: 10.1126/science.aab1369.

引用本文的文献

8
Circuit Topology Analysis of Polymer Folding Reactions.聚合物折叠反应的电路拓扑分析
ACS Cent Sci. 2020 Jun 24;6(6):839-847. doi: 10.1021/acscentsci.0c00308. Epub 2020 May 12.

本文引用的文献

3
Reduction of All-Atom Protein Folding Dynamics to One-Dimensional Diffusion.将全原子蛋白质折叠动力学简化为一维扩散
J Phys Chem B. 2015 Dec 10;119(49):15247-55. doi: 10.1021/acs.jpcb.5b09741. Epub 2015 Nov 25.
4
Structural origin of slow diffusion in protein folding.蛋白质折叠中慢扩散的结构起源。
Science. 2015 Sep 25;349(6255):1504-10. doi: 10.1126/science.aab1369.
8
Native contacts determine protein folding mechanisms in atomistic simulations.天然接触决定原子模拟中的蛋白质折叠机制。
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17874-9. doi: 10.1073/pnas.1311599110. Epub 2013 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验