A.B. Hancock Memorial Laboratory for Cancer Research, Vanderbilt University, Nashville, TN 37232.
Department of Biochemistry, Vanderbilt University, Nashville, TN 37232.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9228-9233. doi: 10.1073/pnas.1802901115. Epub 2018 Aug 27.
Histone posttranslational modifications (PTMs) regulate chromatin dynamics, DNA accessibility, and transcription to expand the genetic code. Many of these PTMs are produced through cellular metabolism to offer both feedback and feedforward regulation. Herein we describe the existence of Lys and Arg modifications on histones by a glycolytic by-product, methylglyoxal (MGO). Our data demonstrate that adduction of histones by MGO is an abundant modification, present at the same order of magnitude as Arg methylation. These modifications were detected on all four core histones at critical residues involved in both nucleosome stability and reader domain binding. In addition, MGO treatment of cells lacking the major detoxifying enzyme, glyoxalase 1, results in marked disruption of H2B acetylation and ubiquitylation without affecting H2A, H3, and H4 modifications. Using RNA sequencing, we show that MGO is capable of altering gene transcription, most notably in cells lacking GLO1. Finally, we show that the deglycase DJ-1 protects histones from adduction by MGO. Collectively, our findings demonstrate the existence of a previously undetected histone modification derived from glycolysis, which may have far-reaching implications for the control of gene expression and protein transcription linked to metabolism.
组蛋白翻译后修饰(PTMs)调节染色质动力学、DNA 可及性和转录,从而扩展遗传密码。其中许多 PTMs 是通过细胞代谢产生的,提供反馈和前馈调节。在此,我们描述了组蛋白上赖氨酸和精氨酸的修饰是由糖酵解副产物甲基乙二醛(MGO)产生的。我们的数据表明,MGO 对组蛋白的加成是一种丰富的修饰,其存在的程度与精氨酸甲基化相当。这些修饰在涉及核小体稳定性和读取器结构域结合的所有四个核心组蛋白的关键残基上都有检测到。此外,在缺乏主要解毒酶——甘油醛-3-磷酸脱氢酶 1(glyoxalase 1,GLO1)的细胞中用 MGO 处理会导致 H2B 乙酰化和泛素化的明显破坏,而不影响 H2A、H3 和 H4 的修饰。通过 RNA 测序,我们表明 MGO 能够改变基因转录,在缺乏 GLO1 的细胞中尤为明显。最后,我们表明去糖基化酶 DJ-1 可以保护组蛋白免受 MGO 的加成。总之,我们的研究结果表明,糖酵解产生了一种以前未被发现的组蛋白修饰,这可能对与代谢相关的基因表达和蛋白质转录的控制具有深远的影响。