Suppr超能文献

(钠+钾)依赖性ATP酶水解活性的反应序列:新的定量动力学模型

Reaction sequences for (Na+ + K+)-dependent ATPase hydrolytic activities: new quantitative kinetic models.

作者信息

Robinson J D, Leach C A, Davis R L, Robinson L J

出版信息

Biochim Biophys Acta. 1986 Aug 15;872(3):294-304. doi: 10.1016/0167-4838(86)90283-9.

Abstract

To delineate better the reaction sequence of the (Na+ + K+)-ATPase and illuminate properties of the active site, kinetic data were fitted to specific quantitative models. For the (Na+ + K+)-ATPase reaction, double-reciprocal plots of velocity against ATP (in the millimolar range), with a series of fixed KCl concentrations, are nearly parallel, in accord with the ping pong kinetics of ATP binding at the low-affinity sites only after Pi release. However, contrary to requirements of usual formulations, Pi is not a competitor toward ATP. A new steady-state kinetic model accommodates these data quantitatively, requiring that under usual assay conditions most of the enzyme activity follows a sequence in which ATP adds after Pi release, but also requiring a minor alternative pathway with ATP adding after K+ binds but before Pi release. The fit to the data also reveals that Pi binds nearly as rapidly to E2 X K X ATP as to E2 X K, whereas ATP binds quite slowly to E2 X P X K: the site resembles a cul-de-sac with distal ATP and proximal Pi sites. For the K+-nitrophenyl phosphatase reaction also catalyzed by this enzyme, the apparent affinities for both substrate and Pi (as inhibitor) decrease with higher KCl concentrations, and both Pi and TNP-ATP appear to be competitive inhibitors toward substrate with 10 mM KCl but noncompetitive inhibitors with 1 mM KCl. These data are accommodated quantitatively by a steady-state model allowing cyclic hydrolytic activity without obligatory release of K+, and with exclusive binding of substrate vs. either Pi or TNP-ATP. The greater sensitivity of the phosphatase reaction to both Pi and arsenate is attributable to the weaker binding by the occluded-K+ enzyme form occurring in the (Na+ + K+)-ATPase reaction sequence. The steady-state models are consistent with cyclical interconversion of high- and low-affinity substrate sites accompanying E1/E2 transitions, with distortion to low-affinity sites altering not only affinity and route of access but also separating the adenine- and phosphate-binding regions, the latter serving in the E2 conformation as the active site for the phosphatase reaction.

摘要

为了更好地描绘(Na⁺ + K⁺)-ATP 酶的反应序列并阐明活性位点的特性,动力学数据被拟合到特定的定量模型中。对于(Na⁺ + K⁺)-ATP 酶反应,在一系列固定的 KCl 浓度下,以 ATP(毫摩尔范围)为横坐标、速度的双倒数图几乎平行,这与仅在 Pi 释放后低亲和力位点处 ATP 结合的乒乓动力学一致。然而,与通常公式的要求相反,Pi 不是 ATP 的竞争者。一个新的稳态动力学模型定量地拟合了这些数据,要求在通常的测定条件下,大多数酶活性遵循 Pi 释放后 ATP 添加的序列,但也需要一个次要的替代途径,即 K⁺ 结合后但 Pi 释放前 ATP 添加。对数据的拟合还表明,Pi 与 E2·K·ATP 的结合速度几乎与 E2·K 的结合速度一样快,而 ATP 与 E2·P·K 的结合相当缓慢:该位点类似于一个死胡同,ATP 位点在远端,Pi 位点在近端。对于也由该酶催化的 K⁺-对硝基苯磷酸酶反应,底物和 Pi(作为抑制剂)的表观亲和力都随着 KCl 浓度的升高而降低,并且在 10 mM KCl 时,Pi 和 TNP-ATP 似乎都是底物的竞争性抑制剂,而在 1 mM KCl 时是非竞争性抑制剂。这些数据通过一个稳态模型进行定量拟合,该模型允许循环水解活性,而无需强制性释放 K⁺,并且底物与 Pi 或 TNP-ATP 具有排他性结合。磷酸酶反应对 Pi 和砷酸盐的更高敏感性归因于(Na⁺ + K⁺)-ATP 酶反应序列中出现的被封闭的 K⁺ 酶形式的较弱结合。稳态模型与伴随 E1/E2 转变的高亲和力和低亲和力底物位点的循环相互转化一致,向低亲和力位点的扭曲不仅改变了亲和力和进入途径,还分离了腺嘌呤和磷酸盐结合区域,后者在 E2 构象中作为磷酸酶反应的活性位点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验