Suppr超能文献

自主移动机器人的轻量级视觉里程计

Lightweight Visual Odometry for Autonomous Mobile Robots.

机构信息

College of Engineering and Computer Science, University of Michigan-Dearborn, Dearborn, MI 48128, USA.

出版信息

Sensors (Basel). 2018 Aug 28;18(9):2837. doi: 10.3390/s18092837.

Abstract

Vision-based motion estimation is an effective means for mobile robot localization and is often used in conjunction with other sensors for navigation and path planning. This paper presents a low-overhead real-time ego-motion estimation (visual odometry) system based on either a stereo or RGB-D sensor. The algorithm's accuracy outperforms typical frame-to-frame approaches by maintaining a limited local map, while requiring significantly less memory and computational power in contrast to using global maps common in full visual SLAM methods. The algorithm is evaluated on common publicly available datasets that span different use-cases and performance is compared to other comparable open-source systems in terms of accuracy, frame rate and memory requirements. This paper accompanies the release of the source code as a modular software package for the robotics community compatible with the Robot Operating System (ROS).

摘要

基于视觉的运动估计是移动机器人定位的一种有效手段,通常与其他传感器结合使用,用于导航和路径规划。本文提出了一种基于立体或 RGB-D 传感器的低开销实时自身运动估计(视觉里程计)系统。该算法通过保持有限的局部地图,在精度上优于典型的逐帧方法,同时与全视觉 SLAM 方法中常用的全局地图相比,所需的内存和计算资源要少得多。该算法在常见的公共可用数据集上进行了评估,这些数据集涵盖了不同的用例,并在准确性、帧率和内存需求方面与其他可比的开源系统进行了比较。本文随源代码一起发布,作为一个模块化软件包,适用于机器人社区,并与机器人操作系统 (ROS) 兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a0/6165120/914715a5fd00/sensors-18-02837-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验