Suppr超能文献

基于动态环境下多阶段异常值剔除的鲁棒立体视觉惯性导航系统。

Robust Stereo Visual Inertial Navigation System Based on Multi-Stage Outlier Removal in Dynamic Environments.

机构信息

Intelligent Robotics Laboratory, Department of Control and Robot Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju-si 28644, Chungbuk, Korea.

出版信息

Sensors (Basel). 2020 May 21;20(10):2922. doi: 10.3390/s20102922.

Abstract

Robotic mapping and odometry are the primary competencies of a navigation system for an autonomous mobile robot. However, the state estimation of the robot typically mixes with a drift over time, and its accuracy is degraded critically when using only proprioceptive sensors in indoor environments. Besides, the accuracy of an ego-motion estimated state is severely diminished in dynamic environments because of the influences of both the dynamic objects and light reflection. To this end, the multi-sensor fusion technique is employed to bound the navigation error by adopting the complementary nature of the Inertial Measurement Unit (IMU) and the bearing information of the camera. In this paper, we propose a robust tightly-coupled Visual-Inertial Navigation System (VINS) based on multi-stage outlier removal using the Multi-State Constraint Kalman Filter (MSCKF) framework. First, an efficient and lightweight VINS algorithm is developed for the robust state estimation of a mobile robot by practicing a stereo camera and an IMU towards dynamic indoor environments. Furthermore, we propose strategies to deal with the impacts of dynamic objects by using multi-stage outlier removal based on the feedback information of estimated states. The proposed VINS is implemented and validated through public datasets. In addition, we develop a sensor system and evaluate the VINS algorithm in the dynamic indoor environment with different scenarios. The experimental results show better performance in terms of robustness and accuracy with low computation complexity as compared to state-of-the-art approaches.

摘要

机器人制图和里程计是自主移动机器人导航系统的主要能力。然而,机器人的状态估计通常会随时间漂移,并且在室内环境中仅使用本体感受传感器时,其准确性会严重降低。此外,由于动态物体和光反射的影响,在动态环境中,自运动估计状态的准确性会严重降低。为此,采用惯性测量单元 (IMU) 和相机方位信息的互补性,采用多传感器融合技术来限制导航误差。在本文中,我们提出了一种基于多阶段异常值剔除的稳健紧耦合视觉惯性导航系统 (VINS),该系统基于多状态约束卡尔曼滤波器 (MSCKF) 框架。首先,通过使用立体相机和 IMU 来开发一种针对动态室内环境的稳健移动机器人状态估计的高效、轻量级 VINS 算法。此外,我们提出了一些策略,通过使用基于估计状态反馈信息的多阶段异常值剔除来处理动态物体的影响。所提出的 VINS 通过公共数据集进行了实现和验证。此外,我们开发了一个传感器系统,并在具有不同场景的动态室内环境中评估了 VINS 算法。实验结果表明,与最先进的方法相比,该算法具有更好的鲁棒性和准确性,同时计算复杂度较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a969/7288036/74b2e393bbd9/sensors-20-02922-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验