Rosser Timothy E, Gross Manuela A, Lai Yi-Hsuan, Reisner Erwin
Christian Doppler Laboratory for Sustainable SynGas Chemistry , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB1 2EW , UK . Email:
Chem Sci. 2016 Jul 1;7(7):4024-4035. doi: 10.1039/c5sc04863j. Epub 2016 Feb 12.
Splitting water into hydrogen and oxygen with molecular catalysts and light has been a long-established challenge. Approaches in homogeneous systems have been met with little success and the integration of molecular catalysts in photoelectrochemical cells is challenging due to inaccessibility and incompatibility of functional hybrid molecule/material electrodes with long-term stability in aqueous solution. Here, we present the first example of light-driven water splitting achieved with precious-metal-free molecular catalysts driving both oxygen and hydrogen evolution reactions. Mesoporous TiO was employed as a low-cost scaffold with long-term stability for anchoring a phosphonic acid-modified nickel(ii) bis-diphosphine catalyst () for electrocatalytic proton reduction. A turnover number of 600 mol H per mol was achieved after 8 h controlled-potential electrolysis at a modest overpotential of 250 mV. X-ray photoelectron, UV-vis and IR spectroscopies confirmed that the molecular structure of the Ni catalyst remains intact after prolonged hydrogen production, thereby reasserting the suitability of molecular catalysts in the development of effective, hydrogen-evolving materials. The relatively mild operating conditions of a pH 3 aqueous solution allowed this molecule-catalysed cathode to be combined with a molecular Fe(ii) catalyst-modified WO photoanode in a photoelectrochemical cell. Water splitting into H and O was achieved under solar light illumination with an applied bias of >0.6 V, which is below the thermodynamic potential (1.23 V) for water splitting and therefore allowed the storage of solar energy in the fuel H.
利用分子催化剂和光将水分解为氢气和氧气一直是一个长期存在的挑战。均相体系中的方法收效甚微,并且由于功能性杂化分子/材料电极难以获得且与水溶液中的长期稳定性不兼容,将分子催化剂整合到光电化学电池中具有挑战性。在此,我们展示了第一个使用无贵金属分子催化剂驱动析氧和析氢反应实现光驱动水分解的例子。介孔TiO被用作具有长期稳定性的低成本支架,用于锚定一种膦酸修饰的镍(II)双二膦催化剂()以进行电催化质子还原。在250 mV的适度过电位下进行8小时的控制电位电解后,每摩尔实现了600摩尔H的周转数。X射线光电子能谱、紫外可见光谱和红外光谱证实,在长时间产氢后,镍催化剂的分子结构保持完整,从而再次证明分子催化剂在开发有效的析氢材料方面的适用性。pH 3水溶液相对温和的操作条件使得这种分子催化的阴极能够与分子铁(II)催化剂修饰的WO光阳极在光电化学电池中结合。在大于0.6 V的外加偏压下进行太阳光照射时实现了水分解为H和O,该偏压低于水分解的热力学电位(1.23 V),因此能够将太阳能存储在燃料H中。