Suppr超能文献

人工神经网络有助于识别疾病亚群并预测原发性干燥综合征中的淋巴瘤。

Artificial neural networks help to identify disease subsets and to predict lymphoma in primary Sjögren's syndrome.

机构信息

Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy.

Villa Santa Maria Foundation, Tavernerio, Italy.

出版信息

Clin Exp Rheumatol. 2018 May-Jun;36 Suppl 112(3):137-144. Epub 2018 Aug 14.

Abstract

OBJECTIVES

Primary Sjögren's syndrome (pSS) is a complex chronic systemic disorder, for which specific and effective therapeutic interventions are still lacking. In this era of precision medicine, there is a clear need for a better definition of disease phenotypes to foster the research of novel specific biomarkers and new therapeutic targets. The main objectives of this work are: 1) to compare Auto Contractive Map (AutoCM), a data mining tool based on an artificial neural network (ANN) versus conventional Principal Component Analysis (PCA) in discriminating different pSS subsets and 2) to specifically focus on variables predictive of MALT-NHL development, assessing the previsional gain of the predictive models developed.

METHODS

Out of a historic cohort of 850 patients, we selected 542 cases of pSS fulfilling the AECG criteria 2002. Thirty-seven variables were analysed including: patient demographics, glandular symptoms, systemic features, biological abnormalities and MALT-NHLs. AutoCM was used to compute the association of strength of each variable with all other variables in the dataset. PCA was applied to the same data set.

RESULTS

Both PCA and AutoCM confirmed the associations between autoantibody positivity and several pSS clinical manifestations, highlighting the importance of serological biomarkers in pSS phenotyping. However, AutoCM allowed us to clearly distinguish pSS patients presenting with predominant glandular manifestations and no or mild extra-glandular features from those with a more severe clinical presentation. Out of 542 patients, we had 27 cases of MALT-NHLs. The AutoCM highlighted that, besides other traditional lymphoproliferative risk factors (i.e. salivary gland enlargement, low C4, leukocytopenia, cryoglobulins, monoclonal gammopathy, disease duration), rheumatoid factor was strongly associated to MALT-NHLs development. By applying data mining analysis, we obtained a predictive model characterised by a sensitivity of 92.5% and a specificity of 98%. If we restricted the analysis to the seven most significant variables, the sensitivity of the model was 96.2% and its specificity 96%.

CONCLUSIONS

Our study has shed new light on the possibility of using novel tools to extract hidden, previously unknown and potentially useful information in complex diseases like pSS, facing the challenge of disease phenotyping as a prerequisite for discovering novel specific biomarkers and new therapeutic targets.

摘要

目的

原发性干燥综合征(pSS)是一种复杂的慢性系统性疾病,目前仍缺乏特异性和有效的治疗干预措施。在精准医学时代,需要更好地定义疾病表型,以促进新型特异性生物标志物和新治疗靶点的研究。本研究的主要目的是:1)比较基于人工神经网络(ANN)的数据挖掘工具 Auto Contractive Map(AutoCM)与传统主成分分析(PCA)在鉴别不同 pSS 亚组中的差异;2)特别关注预测 MALT-NHL 发展的变量,评估所开发预测模型的预测增益。

方法

在 850 例历史队列患者中,我们选择了 542 例符合 AECG 2002 标准的 pSS 患者。分析了 37 个变量,包括患者的人口统计学、腺体症状、系统表现、生物学异常和 MALT-NHL。AutoCM 用于计算每个变量与数据集中所有其他变量的关联强度。PCA 应用于同一数据集。

结果

PCA 和 AutoCM 均证实了自身抗体阳性与 pSS 多种临床表现之间的关联,突出了血清生物标志物在 pSS 表型中的重要性。然而,AutoCM 使我们能够清楚地将以主要腺体表现和无或轻度腺外表现为特征的 pSS 患者与临床表现更严重的患者区分开来。在 542 例患者中,我们有 27 例 MALT-NHL。AutoCM 突出表明,除其他传统的淋巴增生危险因素(即腺体肿大、C4 降低、白细胞减少、冷球蛋白、单克隆丙种球蛋白血症、疾病持续时间)外,类风湿因子与 MALT-NHL 的发生密切相关。通过应用数据挖掘分析,我们获得了一个具有 92.5%敏感性和 98%特异性的预测模型。如果我们将分析仅限于七个最重要的变量,该模型的敏感性为 96.2%,特异性为 96%。

结论

本研究为使用新型工具从复杂疾病(如 pSS)中提取隐藏、未知且可能有用的信息提供了新的思路,为发现新型特异性生物标志物和新的治疗靶点,疾病表型分析是必不可少的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验