Suppr超能文献

生物信息学证据表明广泛存在于 I 型和 II 型 CRISPR-Cas 系统中的原初现象。

Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems.

机构信息

a Department of Biochemistry , University of Otago , Dunedin , New Zealand.

b Genetics Otago , University of Otago , Dunedin , New Zealand.

出版信息

RNA Biol. 2019 Apr;16(4):566-576. doi: 10.1080/15476286.2018.1509662. Epub 2018 Sep 18.

Abstract

CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invading genetic elements, such as plasmids, bacteriophages and archaeal viruses. They consist of cas genes and CRISPR loci, which store genetic memories of previously encountered invaders as short sequences termed spacers. Spacers determine the specificity of CRISPR-Cas defence and immunity can be gained or updated by the addition of new spacers into CRISPR loci. There are two main routes to spacer acquisition, which are known as naïve and primed CRISPR adaptation. Naïve CRISPR adaptation involves the de novo formation of immunity, independent of pre-existing spacers. In contrast, primed CRISPR adaptation (priming) uses existing spacers to enhance the acquisition of new spacers. Priming typically results in spacer acquisition from locations near the site of target recognition by the existing (priming) spacer. Primed CRISPR adaptation has been observed in several type I CRISPR-Cas systems and it is potentially widespread. However, experimental evidence is unavailable for some subtypes, and for most systems, priming has only been shown in a small number of hosts. There is also no current evidence of priming by other CRISPR-Cas types. Here, we used a bioinformatic approach to search for evidence of priming in diverse CRISPR-Cas systems. By analysing the clustering of spacers acquired from phages, prophages and archaeal viruses, including strand and directional biases between subsequently acquired spacers, we demonstrate that two patterns of primed CRISPR adaptation dominate in type I systems. In addition, we find evidence of a priming-like pathway in type II CRISPR-Cas systems.

摘要

CRISPR-Cas 系统为细菌和古菌提供了针对入侵遗传元件(如质粒、噬菌体和古菌病毒)的适应性免疫。它们由 cas 基因和 CRISPR 基因座组成,CRISPR 基因座将先前遇到的入侵物的遗传记忆作为短序列(称为间隔子)存储。间隔子决定了 CRISPR-Cas 防御的特异性,并且可以通过将新的间隔子添加到 CRISPR 基因座中来获得或更新免疫性。有两种主要的获取间隔子的途径,分别称为原始和诱导 CRISPR 适应。原始 CRISPR 适应涉及独立于先前存在的间隔子的新免疫的形成。相比之下,诱导 CRISPR 适应(引发)使用现有的间隔子来增强新间隔子的获取。引发通常导致在现有(引发)间隔子的靶标识别位点附近的位置获取新的间隔子。已经在几种 I 型 CRISPR-Cas 系统中观察到诱导 CRISPR 适应,并且它可能广泛存在。然而,一些亚类缺乏实验证据,并且对于大多数系统,仅在少数宿主中显示了引发。目前也没有其他 CRISPR-Cas 类型引发的证据。在这里,我们使用生物信息学方法来搜索不同 CRISPR-Cas 系统中引发的证据。通过分析从噬菌体、前噬菌体和古菌病毒中获得的间隔子的聚类,包括随后获得的间隔子之间的链和方向偏向,我们表明两种 I 型系统的诱导 CRISPR 适应模式占主导地位。此外,我们在 II 型 CRISPR-Cas 系统中发现了类似于引发的途径的证据。

相似文献

引用本文的文献

10
Structural biology of CRISPR-Cas immunity and genome editing enzymes.CRISPR-Cas 免疫和基因组编辑酶的结构生物学。
Nat Rev Microbiol. 2022 Nov;20(11):641-656. doi: 10.1038/s41579-022-00739-4. Epub 2022 May 13.

本文引用的文献

7
Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.I 型 Cas1-Cas2-3 CRISPR 适应复合物捕获和整合间隔物。
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5122-E5128. doi: 10.1073/pnas.1618421114. Epub 2017 Jun 13.
8
Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity.Cas1 和 Csy 复合物是 Cas2/3 核酸酶活性的相反调控因子。
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5113-E5121. doi: 10.1073/pnas.1616395114. Epub 2017 Apr 24.
9
CRISPR-Cas: Adapting to change.CRISPR-Cas:适应变化。
Science. 2017 Apr 7;356(6333). doi: 10.1126/science.aal5056. Epub 2017 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验