文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用膜伪装和表面展示技术靶向损伤组织的细胞外囊泡。

Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display.

机构信息

Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA, 90048, USA.

出版信息

J Nanobiotechnology. 2018 Aug 30;16(1):61. doi: 10.1186/s12951-018-0388-4.


DOI:10.1186/s12951-018-0388-4
PMID:30165851
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6116387/
Abstract

BACKGROUND: Extracellular vesicles (EVs) and exosomes are nano-sized, membrane-bound vesicles shed by most eukaryotic cells studied to date. EVs play key signaling roles in cellular development, cancer metastasis, immune modulation and tissue regeneration. Attempts to modify exosomes to increase their targeting efficiency to specific tissue types are still in their infancy. Here we describe an EV membrane anchoring platform termed "cloaking" to directly embed tissue-specific antibodies or homing peptides on EV membrane surfaces ex vivo for enhanced vesicle uptake in cells of interest. The cloaking system consists of three components: DMPE phospholipid membrane anchor, polyethylene glycol spacer and a conjugated streptavidin platform molecule, to which any biotinylated molecule can be coupled for EV decoration. RESULTS: We demonstrate the utility of membrane surface engineering and biodistribution tracking with this technology along with targeting EVs for enhanced uptake in cardiac fibroblasts, myoblasts and ischemic myocardium using combinations of fluorescent tags, tissue-targeting antibodies and homing peptide surface cloaks. We compare cloaking to a complementary approach, surface display, in which parental cells are engineered to secrete EVs with fusion surface targeting proteins. CONCLUSIONS: EV targeting can be enhanced both by cloaking and by surface display; the former entails chemical modification of preformed EVs, while the latter requires genetic modification of the parent cells. Reduction to practice of the cloaking approach, using several different EV surface modifications to target distinct cells and tissues, supports the notion of cloaking as a platform technology.

摘要

背景:细胞外囊泡(EVs)和外泌体是纳米大小的、由目前研究的大多数真核细胞分泌的膜结合囊泡。EVs 在细胞发育、癌症转移、免疫调节和组织再生中发挥关键的信号作用。试图修饰外泌体以提高其对特定组织类型的靶向效率仍处于起步阶段。在这里,我们描述了一种称为“伪装”的 EV 膜锚定平台,用于将组织特异性抗体或归巢肽直接嵌入 EV 膜表面,以增强感兴趣细胞中外泌体的摄取。该伪装系统由三个组件组成:DMPE 磷脂膜锚、聚乙二醇间隔物和连接的链霉亲和素平台分子,任何生物素化分子都可以与该平台分子偶联,用于 EV 修饰。

结果:我们展示了这种技术的膜表面工程和生物分布跟踪的实用性,以及使用荧光标记物、组织靶向抗体和归巢肽表面伪装来靶向 EV,以增强心肌成纤维细胞、成肌细胞和缺血心肌的摄取。我们将伪装与互补的方法,即表面展示进行了比较,其中亲本细胞被工程化以分泌带有融合表面靶向蛋白的 EV。

结论:通过伪装和表面展示都可以增强 EV 的靶向性;前者需要对预先形成的 EV 进行化学修饰,而后者则需要对亲本细胞进行基因修饰。使用几种不同的 EV 表面修饰来靶向不同的细胞和组织,对伪装方法进行实际应用,支持了伪装作为一种平台技术的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/ec5522f005eb/12951_2018_388_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/a35cddbb1856/12951_2018_388_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/a9f0d932e5bf/12951_2018_388_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/220a731529e1/12951_2018_388_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/3fdd96309e4b/12951_2018_388_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/6cb8bf7a0f4c/12951_2018_388_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/03415e6aec24/12951_2018_388_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/ec5522f005eb/12951_2018_388_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/a35cddbb1856/12951_2018_388_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/a9f0d932e5bf/12951_2018_388_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/220a731529e1/12951_2018_388_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/3fdd96309e4b/12951_2018_388_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/6cb8bf7a0f4c/12951_2018_388_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/03415e6aec24/12951_2018_388_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6fd/6116387/ec5522f005eb/12951_2018_388_Fig7_HTML.jpg

相似文献

[1]
Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display.

J Nanobiotechnology. 2018-8-30

[2]
PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time.

J Control Release. 2016-2-28

[3]
Differential fluorescence nanoparticle tracking analysis for enumeration of the extracellular vesicle content in mixed particulate solutions.

Methods. 2020-5-1

[4]
Systematic Evaluation of PKH Labelling on Extracellular Vesicle Size by Nanoparticle Tracking Analysis.

Sci Rep. 2020-6-12

[5]
Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors.

J Nanobiotechnology. 2020-1-23

[6]
Heterologous and cross-species tropism of cancer-derived extracellular vesicles.

Theranostics. 2019-8-9

[7]
Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach.

Nanoscale. 2018-2-1

[8]
Generation and Manipulation of Exosomes.

Methods Mol Biol. 2021

[9]
Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia.

Theranostics. 2021-4-19

[10]
Opportunities and Pitfalls of Fluorescent Labeling Methodologies for Extracellular Vesicle Profiling on High-Resolution Single-Particle Platforms.

Int J Mol Sci. 2021-9-29

引用本文的文献

[1]
Cargo Analysis and MRI-Based Therapeutic Assessment of Iron Oxide Labelled Extracellular Vesicles of Hypoxia Human Stem Cells in Ischemic Stroke.

J Extracell Biol. 2025-7-17

[2]
Systemic delivery of biotherapeutic RNA to the myocardium transiently modulates cardiac contractility in vivo.

Proc Natl Acad Sci U S A. 2025-7-22

[3]
The Use of MSCs, iPSCs, and EVs in the Repair of Human MSK Tissues: Is Ultimate Success Dependent on Developing Excellent Implant Materials as Well as Creating an Optimal Environment for Implantation? What Is the Rationale for These Choices?

Int J Mol Sci. 2025-6-28

[4]
Age-associated changes in the heart: implications for COVID-19 therapies.

Aging (Albany NY). 2025-5-13

[5]
Role of Extracellular Vesicles in the Pathogenesis of Brain Metastasis.

J Extracell Biol. 2025-5-6

[6]
Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention.

Fundam Res. 2024-4-12

[7]
Bioengineered extracellular vesicles: The path to precision medicine in liver diseases.

Liver Res. 2025-2-20

[8]
Nanomanaging Chronic Wounds with Targeted Exosome Therapeutics.

Pharmaceutics. 2025-3-13

[9]
Engineered Exosomes Carrying Super-Repressor IκB Reduced Biliary Atresia-Induced Liver Fibrosis in Minipig and Mouse Models.

Pharmaceutics. 2025-2-17

[10]
Selective removal of proteins and microvesicles ex vivo from blood of pancreatic cancer patients using bioengineered adsorption filters.

Cancer Lett. 2025-4-1

本文引用的文献

[1]
A mechanistic roadmap for the clinical application of cardiac cell therapies.

Nat Biomed Eng. 2018-6

[2]
Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide.

Theranostics. 2018-2-14

[3]
Anti-HER2 scFv-Directed Extracellular Vesicle-Mediated mRNA-Based Gene Delivery Inhibits Growth of HER2-Positive Human Breast Tumor Xenografts by Prodrug Activation.

Mol Cancer Ther. 2018-2-26

[4]
Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy.

Stem Cell Reports. 2018-3-1

[5]
The exosomes released from different cell types and their effects in wound healing.

J Cell Biochem. 2018-3-14

[6]
Extracellular Vesicles from Adipose-Derived Mesenchymal Stem/Stromal Cells Accelerate Migration and Activate AKT Pathway in Human Keratinocytes and Fibroblasts Independently of miR-205 Activity.

Stem Cells Int. 2017

[7]
Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells.

J Extracell Vesicles. 2017-6-6

[8]
Exosomes as Reconfigurable Therapeutic Systems.

Trends Mol Med. 2017-7

[9]
Pseudotyping exosomes for enhanced protein delivery in mammalian cells.

Int J Nanomedicine. 2017-4-18

[10]
Engineered Exosomes as Vehicles for Biologically Active Proteins.

Mol Ther. 2017-6-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索