CIC energiGUNE, Parque Tecnológico de Álava, C/Albert Einstein 48, 01510 Miñano, Álava, Spain.
Phys Chem Chem Phys. 2018 Sep 12;20(35):23112-23122. doi: 10.1039/c8cp04181d.
The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure-property relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
富锂阴极材料的微观结构复杂性迄今为止一直阻碍着人们理解其容量和电压衰减与尺寸、形态和结构缺陷之间的关键联系,而这种材料家族正是如此。在这里,Li2MnO3 被用作模型材料,以提取可靠的结构-性能关系,这些关系可以进一步用于开发高性能和长寿命的富锂氧化物。使用 FAULTS 软件制备并彻底表征了一系列具有微观结构可变性的样品,该软件允许量化面缺陷并提取平均晶粒尺寸。结合透射电子显微镜 (TEM) 和密度泛函理论 (DFT) 结果,FAULTS 分析在 Li2MnO3 中的成功应用使得能够合理化合成条件,并确定共存微观结构特征对电压和容量衰减的单独影响,这是开发具有增强循环寿命的高容量锂离子阴极材料的必要步骤。