Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio.
Am J Physiol Heart Circ Physiol. 2018 Dec 1;315(6):H1835-H1850. doi: 10.1152/ajpheart.00293.2018. Epub 2018 Aug 31.
Functional interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) in the arterial wall are necessary for controlling vasoreactivity that underlies vascular resistance and tone. Key signaling pathways converge on the phosphorylation of myosin light chain (p-MLC), the molecular signature of force production in SMCs, through coordinating the relative activities of myosin light chain kinase (MLCK) and myosin phosphatase (MP). Notch signaling in the vessel wall serves critical roles in arterial formation and maturation and has been implicated in arterial vasoregulation. In this report, we hypothesized that Notch signaling through ligands Jagged1 (in SMCs) and delta-like protein-4 (Dll4; in ECs) regulates vasoreactivity via homotypic (SMC-SMC) and heterotypic (EC-SMC) cell interactions. Using ligand induction assays, we demonstrated that Jagged1 selectively induced smooth muscle MLCK gene expression and p-MLC content while inhibiting MP function (i.e., increased Ca sensitization) in a Rho kinase II-dependent manner. Likewise, selective deficiency of smooth muscle Jagged1 in mice resulted in MLCK and p-MLC loss, reduced Ca sensitization, and impaired arterial force generation measured by myography. In contrast, smooth muscle Notch signaling triggered by Dll4 increased expression of MP-targeting subunit 1 (MYPT1; the MP regulatory subunit), whereas arteries from endothelial Dll4-deficient mice featured reduced MYPT1 levels, enhanced force production, and impaired relaxation independent of endothelium-derived nitric oxide signaling. Taken together, this study identifies novel opposing vasoregulatory functions for ligand-specific Notch signaling in the vessel wall, underscoring instructional signaling between ECs and SMCs and suggesting that Notch signals might behave as a "rheostat" in arterial tone control. NEW & NOTEWORTHY The present study unveils novel roles for ligand-specific Notch signaling in arterial function. Smooth muscle Jagged1 and endothelial cell delta-like protein-4 ligands exhibit selective regulation of myosin light chain kinase and myosin phosphatase-targeting subunit 1/myosin phosphatase, respectively, providing a mechanistic link through which Notch signals modulate contractile activities in vascular smooth muscle. These findings may inform vascular derangements observed in human syndromes of Notch signaling deficiency while offering fundamental molecular insights into arterial physiological function.
血管壁中的内皮细胞 (ECs) 和平滑肌细胞 (SMCs) 之间的功能相互作用对于控制血管反应性至关重要,这种反应性是血管阻力和张力的基础。关键信号通路通过协调肌球蛋白轻链激酶 (MLCK) 和肌球蛋白磷酸酶 (MP) 的相对活性,汇聚到肌球蛋白轻链的磷酸化 (p-MLC) 上,这是 SMC 产生力的分子特征。血管壁中的 Notch 信号在动脉形成和成熟中起着关键作用,并与动脉血管调节有关。在本报告中,我们假设通过配体 Jagged1(在 SMC 中)和 Delta-like protein-4(Dll4;在 EC 中)的 Notch 信号通过同质(SMC-SMC)和异质(EC-SMC)细胞相互作用调节血管反应性。通过配体诱导测定,我们证明 Jagged1 选择性诱导平滑肌 MLCK 基因表达和 p-MLC 含量,同时以 Rho 激酶 II 依赖性方式抑制 MP 功能(即增加 Ca 敏感性)。同样,小鼠平滑肌 Jagged1 的选择性缺乏导致 MLCK 和 p-MLC 丢失、Ca 敏感性降低以及肌动图测量的动脉力生成受损。相比之下,由 Dll4 触发的平滑肌 Notch 信号增加了靶向 MP 的亚基 1(MYPT1;MP 调节亚基)的表达,而内皮细胞 Dll4 缺陷型小鼠的动脉则表现出降低的 MYPT1 水平、增强的力生成以及独立于内皮一氧化氮信号的舒张受损。总之,这项研究确定了血管壁中配体特异性 Notch 信号的新型血管调节功能,强调了 ECs 和 SMCs 之间的指令性信号,并表明 Notch 信号可能在动脉张力控制中充当“变阻器”。新的和值得注意的是本研究揭示了配体特异性 Notch 信号在动脉功能中的新作用。平滑肌 Jagged1 和内皮细胞 Delta-like protein-4 配体分别对肌球蛋白轻链激酶和肌球蛋白磷酸酶靶向亚基 1/肌球蛋白磷酸酶进行选择性调节,为 Notch 信号调节血管平滑肌收缩活动提供了一种机制联系。这些发现可能为 Notch 信号缺乏的人类综合征中观察到的血管紊乱提供信息,同时为动脉生理功能提供基本的分子见解。