Suppr超能文献

黄铁矿中汞的化学形态:对预测酸性矿山排水中汞释放的意义。

Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings.

机构信息

ISTerre , Universite Grenoble Alpes, CNRS , CS 40700, 38058 Grenoble , France.

European Synchrotron Radiation Facility (ESRF) , 71 Rue des Martyrs , 38000 Grenoble , France.

出版信息

Environ Sci Technol. 2018 Sep 18;52(18):10286-10296. doi: 10.1021/acs.est.8b02027. Epub 2018 Aug 31.

Abstract

Pyrite (cubic FeS) is the most abundant metal sulfide in nature and also the main host mineral of toxic mercury (Hg). Release of mercury in acid mine drainage resulting from the oxidative dissolution of pyrite in coal and ore and rock resulting from mining, processing, waste management, reclamation, and large construction activities is an ongoing environmental challenge. The fate of mercury depends on its chemical forms at the point source, which in turn depends on how it occurs in pyrite. Here, we show that pyrite in coal, sedimentary rocks, and hydrothermal ore deposits can host varying structural forms of Hg which can be identified with high energy-resolution XANES (HR-XANES) spectroscopy. Nominally divalent Hg is incorporated at the Fe site in pyrite from coal and at a marcasite-type Fe site in pyrite from sedimentary rocks. Distinction of the two Hg bonding environments offers a mean to detect microscopic marcasite inclusions (orthorhombic FeS) in bulk pyrite. In epigenetic pyrite from Carlin-type Au deposit, up to 55 ± 6 at. % of the total Hg occurs as metacinnabar nanoparticles (β-HgS), with the remainder being substitutional at the Fe site. Pyritic mercury from Idrija-type Hg deposit (α-HgS ore) is partly divalent and substitutional and partly reduced into elemental form (liquid). Divalent mercury ions, mercury sulfide nanoparticles, and elemental mercury released by the oxidation of pyrite in acid mine drainage settings would have different environmental pathways. Our results could find important applications for designing control strategies of mercury released to land and water in mine-impacted watersheds.

摘要

黄铁矿(立方 FeS)是自然界中最丰富的金属硫化物,也是有毒汞(Hg)的主要宿主矿物。由于煤炭和矿石以及采矿、加工、废物管理、复垦和大型建筑活动导致的黄铁矿氧化溶解,酸性矿山排水中会释放出汞,这是一个持续存在的环境挑战。汞的命运取决于其在源头的化学形态,而这又取决于它在黄铁矿中的存在形式。在这里,我们表明,煤炭、沉积岩和热液矿床中的黄铁矿可以容纳不同结构形式的汞,这些汞可以用高能量分辨率 X 射线吸收近边结构(HR-XANES)光谱来识别。来自煤炭的黄铁矿中的二价汞以名义形式取代 Fe 位,来自沉积岩的黄铁矿中的二价汞以 marcasite 型 Fe 位取代。两种 Hg 键合环境的区分提供了一种检测块状黄铁矿中微观 marcasite 包裹体(正交 FeS)的方法。在 Carlin 型金矿床中的后生黄铁矿中,高达 55±6at.%的总汞以辰砂纳米颗粒(β-HgS)的形式存在,其余的汞以取代 Fe 位的形式存在。Idrija 型 Hg 矿床(α-HgS 矿石)中的黄铁矿汞部分为二价和取代,部分还原为元素形式(液态)。在酸性矿山排水环境中黄铁矿氧化释放的二价汞离子、硫化汞纳米颗粒和元素汞,将具有不同的环境途径。我们的研究结果可以为设计受矿山影响流域中汞释放到陆地和水中的控制策略提供重要应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验