Center for Quantum Phenomena, Department of Physics, New York University, New York, New York 10003, USA.
Phys Rev Lett. 2018 Aug 17;121(7):076802. doi: 10.1103/PhysRevLett.121.076802.
Periodically driven Kitaev chains show a rich phase diagram as the amplitude and frequency of the drive is varied, with topological phase transitions separating regions with different number of Majorana zero and π modes. We explore whether the critical point separating different phases of the periodically driven chain may be characterized by a universal central charge. We affirmatively answer this question by studying the entanglement entropy (EE) numerically and analytically for the lowest entangled many particle eigenstate at arbitrary nonstroboscopic and stroboscopic times. We find that the EE at the critical point scales logarithmically with a time-independent central charge, and that the Floquet micromotion gives only subleading corrections to the EE. This result also generalizes to multicritical points where the EE is found to have a central charge that is the sum of the central charges of the intersecting critical lines.
周期性驱动的 Kitaev 链随着驱动幅度和频率的变化呈现出丰富的相图,拓扑相变将具有不同数量的 Majorana 零模和 π 模的区域分隔开来。我们探索了周期性驱动链不同相之间的临界点是否可以用通用的中心电荷来描述。我们通过在任意非频闪和频闪时间下对最低纠缠多粒子本征态的纠缠熵(EE)进行数值和解析研究,肯定地回答了这个问题。我们发现,临界点处的 EE 以与时间无关的中心电荷对数缩放,并且 Floquet 微运动仅对 EE 产生次主导修正。这一结果也适用于多临界点,其中 EE 被发现具有交叉临界线的中心电荷之和。