Suppr超能文献

准周期无序在周期性驱动的二聚化p波基塔耶夫链中诱导出临界相。

Quasiperiodic disorder induced critical phases in a periodically driven dimerized p-wave Kitaev chain.

作者信息

Roy Koustav, Roy Shilpi, Basu Saurabh

机构信息

Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.

Department of Physics, National University of Singapore, 117542, Singapore, Singapore.

出版信息

Sci Rep. 2024 Sep 4;14(1):20603. doi: 10.1038/s41598-024-70995-2.

Abstract

The intricate relationship between topology and disorder in non-equilibrium quantum systems presents a captivating avenue for exploring localization phenomenon. Here, we look for a suitable platform that enables an in-depth investigation of the topic. To this end, we delve into the nuanced analysis of the topological and localization characteristics exhibited by a one-dimensional dimerized Kitaev chain under periodic driving and perform detailed analyses of the Floquet Majorana modes. Such a non-equilibrium scenario is made further interesting by including a spatially varying quasiperiodic potential with a temporally modulated amplitude. Apriori, the motivation is to explore an interplay between dimerization and a quasiperiodic disorder in a topological setting which is also known to demonstrate unique (re-entrant) localization properties. While the topological properties of the driven system confirm the presence of zero and Majorana modes, the phase diagram obtained by constructing a pair of topological invariants ( ), also referred to as the real space winding numbers, at different driving frequencies reveal intriguing features that are distinct from the static scenario. In particular, at either low or intermediate frequency regimes, the phase diagram concerning the zero mode involves two distinct phase transitions, one from a topologically trivial to a non-trivial phase, and another from a topological phase to an Anderson localized phase. On the other hand, the study of the Majorana mode unveils the emergence of a unique topological phase, characterized by complete localization of both the bulk and the edge modes, which may be called as the Floquet topological Anderson phase. Moreover, different frequency regimes showcase distinct localization features which can be examined via the localization toolbox, namely, the inverse and the normalized participation ratios. Specifically, the low and high-frequency regimes demonstrate the existence of completely extended and localized phases, respectively. While at intermediate frequencies, we observe the critical (multifractal) phase of the model which is further investigated via a finite-size scaling analysis of the fractal dimension. Finally, to add depth into our study, we have performed a mean level spacing analyses and computed the Hausdorff dimension which yields specific characteristics inherent to the critical phase, offering profound insights into its underlying properties.

摘要

非平衡量子系统中拓扑与无序之间的复杂关系为探索局域化现象提供了一条引人入胜的途径。在此,我们寻找一个合适的平台,以便能够深入研究该主题。为此,我们深入细致地分析了一维二聚化基塔耶夫链在周期驱动下展现出的拓扑和局域化特征,并对弗洛凯马约拉纳模式进行了详细分析。通过纳入一个具有时间调制幅度的空间变化准周期势,这种非平衡情形变得更加有趣。先验地,其动机是探索在拓扑环境中二聚化与准周期无序之间的相互作用,而这种拓扑环境也已知会展现出独特的(再入)局域化特性。虽然驱动系统的拓扑性质证实了零模和马约拉纳模式的存在,但通过在不同驱动频率下构建一对拓扑不变量( )(也称为实空间缠绕数)所获得的相图揭示了与静态情形不同的有趣特征。特别是,在低频或中频区域,关于零模的相图涉及两个不同的相变,一个是从拓扑平凡相到非平凡相,另一个是从拓扑相到安德森局域相。另一方面,对马约拉纳模式的研究揭示了一个独特拓扑相的出现,其特征是体态和边缘模式都完全局域化,这可以称为弗洛凯拓扑安德森相。此外,不同的频率区域展示出不同的局域化特征,这些特征可以通过局域化工具箱,即逆参与率和归一化参与率来检验。具体而言,低频和高频区域分别展示了完全扩展相和局域相的存在。而在中频时,我们观察到模型的临界(多重分形)相,并通过对分形维数的有限尺寸标度分析对其进行了进一步研究。最后,为了深化我们的研究,我们进行了平均能级间距分析并计算了豪斯多夫维数,这给出了临界相固有的特定特征,为其潜在性质提供了深刻见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bf7/11375019/a3cb9e259eee/41598_2024_70995_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验