Centre for Quantum Software and Information, Faculty of Engineering and Information Technology, University of Technology Sydney, New South Wales 2007, Australia.
School of Mathematical Sciences and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
Phys Rev Lett. 2018 Aug 17;121(7):070404. doi: 10.1103/PhysRevLett.121.070404.
The ability to distill quantum coherence is pivotal for optimizing the performance of quantum technologies; however, such a task cannot always be accomplished with certainty. Here we develop a general framework of probabilistic distillation of quantum coherence in a one-shot setting, establishing fundamental limitations for different classes of free operations. We first provide a geometric interpretation for the maximal success probability, showing that under maximally incoherent operations (MIO) and dephasing-covariant incoherent operations (DIO) the problem can be simplified into efficiently computable semidefinite programs. Exploiting these results, we find that DIO and its subset of strictly incoherent operations have equal power in the probabilistic distillation of coherence from pure input states, while MIO are strictly stronger. We then prove a fundamental no-go result: Distilling coherence from any full-rank state is impossible even probabilistically. We further find that in some conditions the maximal success probability can vanish suddenly beyond a certain threshold in the distillation fidelity. Finally, we consider probabilistic coherence distillation assisted by a catalyst and demonstrate, with specific examples, its superiority to the unassisted and deterministic cases.
量子相干性的浓缩能力对于优化量子技术的性能至关重要;然而,并非总是能够确定地完成这样的任务。在这里,我们在单次设置中开发了一种概率浓缩量子相干性的通用框架,为不同类别的自由操作确定了基本限制。我们首先为最大成功概率提供了一种几何解释,表明在最大非相干操作(MIO)和相位相干不变非相干操作(DIO)下,问题可以简化为可有效计算的半定规划。利用这些结果,我们发现 DIO 及其严格非相干操作的子集在从纯输入态浓缩相干性方面具有相同的能力,而 MIO 则要强得多。然后,我们证明了一个基本的不可能结果:即使是概率性的,从任何满秩态浓缩相干性也是不可能的。我们进一步发现,在某些条件下,在浓缩保真度超过某个阈值时,最大成功概率会突然消失。最后,我们考虑了催化剂辅助的概率相干性浓缩,并通过具体示例证明了其在无辅助和确定性情况下的优越性。