Jacob R J
Vet Microbiol. 1986 Mar;11(3):221-37. doi: 10.1016/0378-1135(86)90025-8.
Preliminary experiments have revealed that several laboratory and wild-type strains of the equine herpesvirus (EHV) triad were temperature-sensitive for growth when assayed at 39 degrees C. The efficiencies of plating (EOP) observed were 10(-2) for both EHV 1 and 2, and 1 X 10(-6) for EHV 3. The EOPs were determined by plaque assays which compared titrations at 34 degrees C and 39 degrees C on equine fetal dermal fibroblast cells. Growth yield experiments, assayed at 34 degrees C, reflected those EOP's, but did not indicate any difference in yields when infected cultures were incubated at 34 degrees C and 37 degrees C. Temperature shift experiments with EHV 3-infected cultures revealed that a temperature-sensitive function(s) responsible for the reduction in titer appeared to be a late function(s). All strains examined appeared to incorporate H3-thymidine into viral-density DNA at the non-permissive temperature of 39 degrees C. Electron microscopy of EHV 3-infected cell cultures, incubated continuously at the non-permissive temperature and examined at 18 h after infection, revealed structures consistent with the accumulation of nucleocapsids within the nucleus. The evidence presented is consistent with the hypothesis that in equine dermal cells infected with a plaque-purified wild-type strain of EHV 3 (1118LP), a function needed for the egress of nucleocapsids from the nucleus is absent at 39 degrees C. The significance of these findings relative to the pathogenicity of the disease (equine coital exanthema) caused by this virus is discussed.