Suppr超能文献

在染色质中启动碱基切除修复。

Initiating base excision repair in chromatin.

机构信息

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States.

Department of Chemistry, Brown University, Providence, RI 02912, United States.

出版信息

DNA Repair (Amst). 2018 Nov;71:87-92. doi: 10.1016/j.dnarep.2018.08.011. Epub 2018 Aug 24.

Abstract

The base excision repair (BER) pathway removes modified nucleobases that can be deleterious to an organism. BER is initiated by a glycosylase, which finds and removes these modified nucleobases. Most of the characterization of glycosylase activity has been conducted in the context of DNA oligomer substrates. However, DNA within eukaryotic organisms exists in a packaged environment with the basic unit of organization being the nucleosome core particle (NCP). The NCP is a complex substrate for repair in which a variety of factors can influence glycosylase activity. In this Review, we focus on the geometric positioning of modified nucleobases in an NCP and the consequences on glycosylase activity and initiating BER.

摘要

碱基切除修复(BER)途径可去除对生物体有害的修饰碱基。BER 由糖苷酶起始,该酶可发现并去除这些修饰碱基。糖苷酶活性的大部分特征已在 DNA 寡聚体底物的背景下进行了研究。然而,真核生物中的 DNA 存在于一个被包装的环境中,其基本组织单元是核小体核心颗粒(NCP)。NCP 是一种复杂的修复底物,其中各种因素会影响糖苷酶的活性。在这篇综述中,我们专注于修饰碱基在 NCP 中的几何定位以及对糖苷酶活性和起始 BER 的影响。

相似文献

1
Initiating base excision repair in chromatin.
DNA Repair (Amst). 2018 Nov;71:87-92. doi: 10.1016/j.dnarep.2018.08.011. Epub 2018 Aug 24.
2
Chromatin and other obstacles to base excision repair: potential roles in carcinogenesis.
Mutagenesis. 2020 Feb 13;35(1):39-50. doi: 10.1093/mutage/gez029.
3
Differential Ability of Five DNA Glycosylases to Recognize and Repair Damage on Nucleosomal DNA.
ACS Chem Biol. 2017 Mar 17;12(3):692-701. doi: 10.1021/acschembio.6b00921. Epub 2017 Jan 23.
4
Challenges for base excision repair enzymes: Acquiring access to damaged DNA in chromatin.
Enzymes. 2019;45:27-57. doi: 10.1016/bs.enz.2019.07.002. Epub 2019 Aug 9.
5
6
Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.
J Biol Chem. 2014 Jul 18;289(29):19881-93. doi: 10.1074/jbc.M114.571588. Epub 2014 Jun 2.
7
Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
Bioessays. 2018 Nov;40(11):e1800133. doi: 10.1002/bies.201800133. Epub 2018 Sep 28.
8
[Initial stages of DNA Base Excision Repair in Nucleosomes].
Mol Biol (Mosk). 2021 Mar-Apr;55(2):194-209. doi: 10.31857/S0026898421020087.
9
Base excision repair in chromatin: Insights from reconstituted systems.
DNA Repair (Amst). 2015 Dec;36:77-85. doi: 10.1016/j.dnarep.2015.09.009. Epub 2015 Sep 16.
10
Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1.
DNA Repair (Amst). 2010 Feb 4;9(2):134-43. doi: 10.1016/j.dnarep.2009.11.005. Epub 2009 Dec 11.

引用本文的文献

1
DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants.
Int J Mol Sci. 2024 Apr 16;25(8):4393. doi: 10.3390/ijms25084393.
2
Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage.
Methods Mol Biol. 2023;2701:55-76. doi: 10.1007/978-1-0716-3373-1_4.
3
Human Polβ Natural Polymorphic Variants G118V and R149I Affects Substate Binding and Catalysis.
Int J Mol Sci. 2023 Mar 20;24(6):5892. doi: 10.3390/ijms24065892.
5
Obstacles and opportunities for base excision repair in chromatin.
DNA Repair (Amst). 2022 Aug;116:103345. doi: 10.1016/j.dnarep.2022.103345. Epub 2022 May 28.
6
DNA-Protein Cross-Linking Sequencing for Genome-Wide Mapping of Thymidine Glycol.
J Am Chem Soc. 2022 Jan 12;144(1):454-462. doi: 10.1021/jacs.1c10490. Epub 2022 Jan 3.
7
VRK1 Depletion Facilitates the Synthetic Lethality of Temozolomide and Olaparib in Glioblastoma Cells.
Front Cell Dev Biol. 2021 Jun 14;9:683038. doi: 10.3389/fcell.2021.683038. eCollection 2021.
8
Expanding molecular roles of UV-DDB: Shining light on genome stability and cancer.
DNA Repair (Amst). 2020 Oct;94:102860. doi: 10.1016/j.dnarep.2020.102860. Epub 2020 Apr 27.
9
Mode of action-based risk assessment of genotoxic carcinogens.
Arch Toxicol. 2020 Jun;94(6):1787-1877. doi: 10.1007/s00204-020-02733-2. Epub 2020 Jun 15.
10
Recognition of 1,-ethenoguanine by alkyladenine DNA glycosylase is restricted by a conserved active-site residue.
J Biol Chem. 2020 Feb 7;295(6):1685-1693. doi: 10.1074/jbc.RA119.011459. Epub 2019 Dec 27.

本文引用的文献

1
A cassette of basic amino acids in histone H2B regulates nucleosome dynamics and access to DNA damage.
J Biol Chem. 2018 May 11;293(19):7376-7386. doi: 10.1074/jbc.RA117.000358. Epub 2018 Mar 27.
3
Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.
Genome Res. 2017 Oct;27(10):1674-1684. doi: 10.1101/gr.225771.117. Epub 2017 Sep 14.
4
6
Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
Mol Cell. 2017 May 4;66(3):384-397.e8. doi: 10.1016/j.molcel.2017.04.012.
7
Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[a]pyrene-Derived Lesion.
Biochemistry. 2017 Apr 11;56(14):1963-1973. doi: 10.1021/acs.biochem.6b01208. Epub 2017 Mar 22.
8
Differential Ability of Five DNA Glycosylases to Recognize and Repair Damage on Nucleosomal DNA.
ACS Chem Biol. 2017 Mar 17;12(3):692-701. doi: 10.1021/acschembio.6b00921. Epub 2017 Jan 23.
9
Single-Molecule Observation Reveals Spontaneous Protein Dynamics in the Nucleosome.
J Phys Chem B. 2016 Sep 1;120(34):8925-31. doi: 10.1021/acs.jpcb.6b06235. Epub 2016 Aug 16.
10
Site-specific Acetylation of Histone H3 Decreases Polymerase β Activity on Nucleosome Core Particles in Vitro.
J Biol Chem. 2016 May 20;291(21):11434-45. doi: 10.1074/jbc.M116.725788. Epub 2016 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验