Suppr超能文献

组蛋白 H2B 中的基本氨基酸盒调节核小体动力学和 DNA 损伤的可及性。

A cassette of basic amino acids in histone H2B regulates nucleosome dynamics and access to DNA damage.

机构信息

From Biochemistry and Biophysics, School of Molecular Biosciences, Pullman, Washington 99164-7520.

From Biochemistry and Biophysics, School of Molecular Biosciences, Pullman, Washington 99164-7520; Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520.

出版信息

J Biol Chem. 2018 May 11;293(19):7376-7386. doi: 10.1074/jbc.RA117.000358. Epub 2018 Mar 27.

Abstract

Nucleosome dynamics, such as spontaneous DNA unwrapping, are postulated to have a critical role in regulating the access of DNA repair machinery to DNA lesions within nucleosomes. However, the specific histone domains that regulate nucleosome dynamics and the impact of such changes in intrinsic nucleosome dynamics on DNA repair are not well understood. Previous studies identified a highly conserved region in the N-terminal tail of histone H2B known as the istone H2epression (or HBR) domain, which has a significant influence on gene expression, chromatin assembly, and DNA damage formation and repair. However, the molecular mechanism(s) that may account for these observations are limited. In this study, we characterized the stability and dynamics of ΔHBR mutant nucleosome core particles (NCPs) by restriction enzyme accessibility (REA), FRET, and temperature-induced sliding of histone octamers. Our results indicate that ΔHBR-NCPs are more dynamic, with a larger steady-state fraction of the NCP population occupying the unwrapped state than for WT-NCPs. Additionally, ΔHBR-histone octamers are more susceptible to temperature-induced sliding on DNA than WT histone octamers. Furthermore, we show that the activity of base excision repair enzymes at uracil lesions and single nucleotide gaps is enhanced in a site-specific manner in ΔHBR-NCPs. This enhanced activity correlates well with regions exhibiting increased DNA unwrapping. Finally, removal of the HBR domain is not sufficient to completely alleviate the structural constraints imposed by histone octamers on the activity of base excision repair enzymes.

摘要

核小体动力学,如自发的 DNA 解缠绕,被认为在调节 DNA 修复机制进入核小体中 DNA 损伤部位方面具有关键作用。然而,调节核小体动力学的具体组蛋白结构域以及内在核小体动力学变化对 DNA 修复的影响尚不清楚。先前的研究确定了组蛋白 H2B 中 N 端尾部的一个高度保守区域,称为组蛋白 H2 表达(或 HBR)结构域,该结构域对基因表达、染色质组装以及 DNA 损伤形成和修复有重大影响。然而,可能解释这些观察结果的分子机制有限。在这项研究中,我们通过限制酶可及性(REA)、FRET 和组蛋白八聚体的温度诱导滑动来表征 ΔHBR 突变核小体核心颗粒(NCP)的稳定性和动力学。我们的结果表明,ΔHBR-NCP 更具动态性,与 WT-NCP 相比,NCP 群体中处于解开状态的稳态分数更大。此外,与 WT 组蛋白八聚体相比,ΔHBR 组蛋白八聚体在 DNA 上更易受温度诱导的滑动。此外,我们表明,在 ΔHBR-NCP 中,碱基切除修复酶在尿嘧啶损伤和单核苷酸缺口处的活性以特定部位的方式增强。这种增强的活性与表现出增加的 DNA 解缠绕的区域很好地相关。最后,去除 HBR 结构域不足以完全缓解组蛋白八聚体对碱基切除修复酶活性的结构限制。

相似文献

9
UV damage in DNA promotes nucleosome unwrapping.DNA 中的紫外线损伤会促进核小体解缠绕。
J Biol Chem. 2010 Aug 20;285(34):26295-303. doi: 10.1074/jbc.M110.140087. Epub 2010 Jun 19.

引用本文的文献

7
Initiating base excision repair in chromatin.在染色质中启动碱基切除修复。
DNA Repair (Amst). 2018 Nov;71:87-92. doi: 10.1016/j.dnarep.2018.08.011. Epub 2018 Aug 24.

本文引用的文献

3
UV-Induced DNA Damage and Mutagenesis in Chromatin.染色质中紫外线诱导的 DNA 损伤和突变。
Photochem Photobiol. 2017 Jan;93(1):216-228. doi: 10.1111/php.12646. Epub 2016 Nov 7.
6
The current state of eukaryotic DNA base damage and repair.真核生物DNA碱基损伤与修复的当前状态
Nucleic Acids Res. 2015 Dec 2;43(21):10083-101. doi: 10.1093/nar/gkv1136. Epub 2015 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验