Suppr超能文献

深部脑刺激手术中的风险分层:开发一种预测患者出院处置情况的算法,准确率达91.9%。

Risk stratification in deep brain stimulation surgery: Development of an algorithm to predict patient discharge disposition with 91.9% accuracy.

作者信息

Buchlak Quinlan D, Kowalczyk Mark, Leveque Jean-Christophe, Wright Anna, Farrokhi Farrokh

机构信息

School of Medicine, The University of Notre Dame, Sydney, NSW, Australia.

University of Washington Medical Center, Seattle, WA, USA.

出版信息

J Clin Neurosci. 2018 Nov;57:26-32. doi: 10.1016/j.jocn.2018.08.051. Epub 2018 Aug 28.

Abstract

Clinical decision making is susceptible to biases and can be improved with the application of predictive models and decision support systems (DSS). The purpose of this study was to develop a predictive risk stratification model and DSS that could accurately predict whether a patient was likely to be of high- or low-acuity discharge disposition (DD) status subsequent to DBS surgery. Data were collected for 135 DBS patients by reviewing medical records. Multivariate logistic regression was applied to develop the predictive algorithm. The two significant predictive models showed good fit and were calibrated by using AUROC curve analysis. The model predicting DD in all patients (n = 135) yielded a predictive accuracy of 91.9% (AUROC = 0.825, p < .001). The model predicting DD in Parkinson's Disease patients (n = 91) yielded a predictive accuracy of 89.0% (AUROC = 0.853, p < .001). Age was a significant predictor of DD across all patients (OR = 1.11, p < .05) and BMI was a significant predictor of DD amongst Parkinson's Disease patients (OR = 1.16, p < .05). It is possible to accurately predict the DD of DBS patients using routinely collected preoperative variables. The predictive algorithms were applied in the form of a model-driven DSS to assist in improving clinical decision making and patient safety.

摘要

临床决策容易受到偏差影响,而应用预测模型和决策支持系统(DSS)可以改善这种情况。本研究的目的是开发一种预测风险分层模型和DSS,以准确预测患者在脑深部电刺激(DBS)手术后出院时高或低急性处置(DD)状态的可能性。通过查阅病历收集了135例DBS患者的数据。应用多变量逻辑回归来开发预测算法。两个显著的预测模型显示出良好的拟合度,并通过使用AUROC曲线分析进行了校准。预测所有患者(n = 135)DD的模型预测准确率为91.9%(AUROC = 0.825,p <.001)。预测帕金森病患者(n = 91)DD的模型预测准确率为89.0%(AUROC = 0.853,p <.001)。年龄是所有患者DD的显著预测因素(OR = 1.11,p <.05),而体重指数(BMI)是帕金森病患者DD的显著预测因素(OR = 1.16,p <.05)。使用常规收集的术前变量可以准确预测DBS患者的DD。预测算法以模型驱动的DSS形式应用,以协助改善临床决策和患者安全。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验