Suppr超能文献

用于压缩多视角深度视频的跨视图多边滤波器。

Cross-View Multi-Lateral Filter for Compressed Multi-View Depth Video.

出版信息

IEEE Trans Image Process. 2019 Jan;28(1):302-315. doi: 10.1109/TIP.2018.2867740. Epub 2018 Aug 29.

Abstract

Multi-view depth is crucial for describing positioning information in 3D space for virtual reality, free viewpoint video, and other interaction- and remote-oriented applications. However, in cases of lossy compression for bandwidth limited remote applications, the quality of multi-view depth video suffers from quantization errors, leading to the generation of obvious artifacts in consequent virtual view rendering during interactions. Considerable efforts must be made to properly address these artifacts. In this paper, we propose a cross-view multi-lateral filtering scheme to improve the quality of compressed depth maps/videos within the framework of asymmetric multi-view video with depth compression. Through this scheme, a distorted depth map is enhanced via non-local candidates selected from current and neighboring viewpoints of different time-slots. Specifically, these candidates are clustered into a macro super pixel denoting the physical and semantic cross-relationships of the cross-view, spatial and temporal priors. The experimental results show that gains from static depth maps and dynamic depth videos can be obtained from PSNR and SSIM metrics, respectively. In subjective evaluations, even object contours are recovered from a compressed depth video. We also verify our method via several practical applications. For these verifications, artifacts on object contours are properly managed for the development of interactive video and discontinuous object surfaces are restored for 3D modeling. Our results suggest that the proposed filter outperforms state-of-the-art filters and is suitable for use in multi-view color plus depth-based interaction- and remote-oriented applications.

摘要

多视角深度对于虚拟现实、自由视点视频和其他交互和远程应用程序来说是描述三维空间中定位信息的关键。然而,在用于带宽有限的远程应用程序的有损压缩情况下,多视角深度视频的质量会受到量化误差的影响,导致在交互过程中后续虚拟视图渲染时生成明显的伪影。必须付出相当大的努力来正确解决这些伪影。在本文中,我们提出了一种跨视图多边滤波方案,以在具有深度压缩的非对称多视角视频框架内改善压缩深度图/视频的质量。通过该方案,通过从不同时隙的当前和相邻视点选择的非局部候选者来增强失真的深度图。具体来说,这些候选者被聚类为一个宏超像素,表示跨视图、空间和时间先验的物理和语义交叉关系。实验结果表明,从 PSNR 和 SSIM 指标可以分别获得静态深度图和动态深度视频的增益。在主观评估中,即使是从压缩深度视频中也可以恢复对象轮廓。我们还通过几个实际应用验证了我们的方法。对于这些验证,通过适当管理对象轮廓上的伪影,为交互式视频的开发和不连续的对象表面的恢复提供了帮助,用于 3D 建模。我们的结果表明,所提出的滤波器优于最先进的滤波器,适用于基于多视角颜色和深度的交互和远程应用程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验