Suppr超能文献

毛蕊异黄酮葡萄糖苷和毛蕊异黄酮木糖苷高效转化为环黄芪醇的糖刺激β-葡萄糖苷酶和β-木糖苷酶。

Highly Efficient Biotransformation of Astragaloside IV to Cycloastragenol by Sugar-Stimulated β-Glucosidase and β-Xylosidase from .

机构信息

College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China.

Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing 210037, P.R. China.

出版信息

J Microbiol Biotechnol. 2019 Dec 28;29(12):1882-1893. doi: 10.4014/jmb.1807.07020.

Abstract

β-Glucosidases and β-xylosidases are two categories of enzymes that could cleave out nonreducing, terminal β-D-glucosyl and β-D-xylosyl residues with release of D-glucose and Dxylose, respectively. In this paper, two functional β-glucosidase Dth3 and β-xylosidase Xln-DT from were heterologously expressed in BL21 (DE3). Dth3 and Xln-DT were relatively stable at 75°C and were tolerant or even stimulated by glucose and xylose. Dth3 was highly tolerant to glucose with a value of approximately 3 M. Meanwhile, it was not affected by xylose in high concentration. The activity of Xln-DT was stimulated 2.13- fold by 1 M glucose and 1.29-fold by 0.3 M xylose, respectively. Furthermore, the β- glucosidase Dth3 and β-xylosidase Xln-DT showed excellent selectivity to cleave the outer C-6 and C-3 sugar moieties of ASI, which established an effective and green method to produce the more pharmacologically active CAG, an exclusive telomerase activator. We measured temperature, pH and dosage of enzyme using a single-factor experiment in ASI biotransformation. After optimization, the optimal reaction conditions were as follows: 75°C, pH 5.5, 1 U of Dth3 and 0.2 U of Xln-DT, respectively. Under the optimized conditions, 1 g/l ASI was transformed into 0.63 g/l CAG with a corresponding molar conversion of 94.5% within 3 h. This is the first report to use the purified thermostable and sugar-tolerant enzymes from to hydrolyze ASI synergistically, which provides a specific, environment-friendly and cost-effective way to produce CAG.

摘要

β-葡萄糖苷酶和β-木糖苷酶是能够分别切割出非还原性末端β-D-葡萄糖基和β-D-木糖基残基,并释放 D-葡萄糖和 Dxylose 的两类酶。本文在 BL21 (DE3)中异源表达了来自 的两种功能性β-葡萄糖苷酶 Dth3 和β-木糖苷酶 Xln-DT。Dth3 和 Xln-DT 在 75°C 下相对稳定,并且耐受甚至受葡萄糖和木糖的刺激。Dth3 对葡萄糖的耐受力非常高,其值约为 3 M。同时,它不受高浓度木糖的影响。葡萄糖和木糖分别将 Xln-DT 的活性刺激了 2.13 倍和 1.29 倍。此外,β-葡萄糖苷酶 Dth3 和β-木糖苷酶 Xln-DT 对 ASI 的外 C-6 和 C-3 糖部分的切割具有极好的选择性,这为生产更具药理活性的 CAG(一种独特的端粒酶激活剂)建立了一种有效和绿色的方法。我们使用单因素实验在 ASI 生物转化中测量了温度、pH 值和酶用量。优化后,最佳反应条件如下:75°C、pH5.5、Dth3 为 1 U、Xln-DT 为 0.2 U。在优化条件下,1 g/L 的 ASI 在 3 h 内转化为 0.63 g/L 的 CAG,转化率为 94.5%。这是首次报道使用来自 的纯化耐热和耐糖酶协同水解 ASI,为生产 CAG 提供了一种特异、环保和经济有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验