Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan.
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19 RQ, UK.
DNA Repair (Amst). 2018 Nov;71:164-171. doi: 10.1016/j.dnarep.2018.08.020. Epub 2018 Aug 23.
Canonical DNA non-homologous end-joining (c-NHEJ) and homologous recombination (HR), the two major DNA double-strand break (DSB) repair pathways, have long been depicted as competitors, fighting a race to rejoin DSBs. In human cells, Ku, an upstream component of NHEJ, is highly abundant and has exquisite end-binding capacity. Emerging evidence has suggested that Ku is the first protein binding most, if not all, DSBs, and creates a block to resection. Although most c-NHEJ proceeds without resection, recent studies have provided strong evidence for a process of resection-dependent c-NHEJ, that repairs a subset of DSBs. HR also repairs a subset of two-ended DSBs in G2 phase and processes one-ended DSBs that arise following replication fork stalling or collapse to promote replication restart. HR also necessitates end-resection. This raises the question of how end-resection takes place despite Ku's avid end-binding capacity. Insight into this enigma has been gained from the analysis of DSBs generated by Spo11 or TOP2, which create protein-bridged DSBs. The progression of repair by HR or NHEJ requires removal of the end-blocking lesions. The MRE11-RAD50-NBS1 (MRN) complex, CtIP and EXO1 play critical roles in this process. Here, we review our current understanding of how resection arises at lesions blocked by covalently bound Spo11 or TOP2 or following Ku binding, which effectively creates a distinct resection-blocking lesion due to its avid end-binding activity and abundance. Our review reveals that Ku plays an active role in determining pathway choice and exposes similarities yet distinctions in the progression of resection that is suited to the optimal repair pathway choice.
经典的非同源末端连接(c-NHEJ)和同源重组(HR)是两种主要的 DNA 双链断裂(DSB)修复途径,长期以来一直被描绘为竞争对手,争夺 DSB 的重连。在人类细胞中,NHEJ 的上游组成部分 Ku 高度丰富,具有精细的末端结合能力。新出现的证据表明,Ku 是第一个结合大多数(如果不是全部)DSB 的蛋白质,并形成了一个阻止核酸酶切割的障碍。尽管大多数 c-NHEJ 不需要核酸酶切割,但最近的研究为依赖核酸酶切割的 c-NHEJ 过程提供了有力的证据,该过程修复了一部分 DSB。HR 也修复了 G2 期双链末端的一部分 DSB,并处理复制叉停滞或崩溃后产生的单链末端 DSB,以促进复制起始。HR 也需要末端核酸酶切割。这就提出了一个问题,即在 Ku 强烈的末端结合能力下,末端核酸酶切割是如何发生的。通过分析 Spo11 或 TOP2 产生的 DSB,人们对这个谜团有了一定的了解,这两种酶都能产生蛋白桥接的 DSB。HR 或 NHEJ 的修复进展需要去除末端阻断损伤。MRE11-RAD50-NBS1(MRN)复合物、CtIP 和 EXO1 在这个过程中发挥着关键作用。在这里,我们综述了目前对 c-NHEJ 修复途径选择的理解,包括如何在 Spo11 或 TOP2 共价结合形成的损伤处或 Ku 结合形成的损伤处引发核酸酶切割,由于 Ku 强烈的末端结合活性和丰富程度,Ku 有效地形成了一种独特的核酸酶切割阻断损伤。我们的综述揭示了 Ku 在决定途径选择方面发挥着积极的作用,并揭示了核酸酶切割进展的相似之处和差异,这与最优修复途径选择是相适应的。