Physics Division, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA.
Nat Commun. 2018 Sep 3;9(1):3563. doi: 10.1038/s41467-018-06071-x.
Static compression experiments over 4 Mbar are rare, yet critical for developing accurate fundamental physics and chemistry models, relevant to a range of topics including modeling planetary interiors. Here we show that focused ion beam crafted toroidal single-crystal diamond anvils with ~9.0 μm culets are capable of producing pressures over 5 Mbar. The toroidal surface prevents gasket outflow and provides a means to stabilize the central culet. We have reached a maximum pressure of ~6.15 Mbar using Re as in situ pressure marker, a pressure regime typically accessed only by double-stage diamond anvils and dynamic compression platforms. Optimizing single-crystal diamond anvil design is key for extending the pressure range over which studies can be performed in the diamond anvil cell.
在 4 兆巴以上进行静态压缩实验非常罕见,但对于开发准确的基础物理和化学模型至关重要,这些模型与包括行星内部建模在内的一系列主题相关。在这里,我们展示了聚焦离子束制造的具有约 9.0 μm 晶尖的环形单晶金刚石压砧能够产生超过 5 兆巴的压力。环形表面可防止垫圈外流,并提供了一种稳定中心晶尖的方法。我们使用 Re 作为原位压力标记物达到了约 6.15 兆巴的最大压力,这是通常仅通过双级金刚石压砧和动态压缩平台才能达到的压力范围。优化单晶金刚石压砧设计是扩展可在金刚石压砧细胞中进行研究的压力范围的关键。