Suppr超能文献

血浆铁蛋白浓度与肥胖女性体内脂肪酸动员及胰岛素抵抗呈正相关。

Plasma ferritin concentration is positively associated with in vivo fatty acid mobilization and insulin resistance in obese women.

作者信息

Ryan Benjamin J, Van Pelt Douglas W, Guth Lisa M, Ludzki Alison C, Gioscia-Ryan Rachel A, Ahn Chiwoon, Foug Katherine L, Horowitz Jeffrey F

机构信息

Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Exp Physiol. 2018 Nov;103(11):1443-1447. doi: 10.1113/EP087283. Epub 2018 Oct 8.

Abstract

NEW FINDINGS

What is the central question of this study? Do obese women with relatively high whole-body iron stores exhibit elevated in vivo rates of fatty acid (FA) release from adipose tissue compared with a well-matched cohort of obese women with relatively low iron stores? What is the main finding and its importance? Obese women with high plasma [ferritin] (a marker of whole-body iron stores) had greater FA mobilization, lipolytic activation in adipose tissue and insulin resistance (IR) compared with obese women with lower plasma [ferritin]. Given that elevated FA mobilization is intimately linked with the development of IR, these findings suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability.

ABSTRACT

High rates of fatty acid (FA) mobilization from adipose tissue are associated with insulin resistance (IR) in obesity. In vitro evidence suggests that iron stimulates lipolysis in adipocytes, but whether iron is related to in vivo FA mobilization is unknown. We hypothesized that plasma ferritin concentration ([ferritin]), a marker of body iron stores, would be positively associated with FA mobilization. We measured [ferritin], the rate of appearance of FA in the systemic circulation (FA Ra; stable isotope dilution), key adipose tissue lipolytic proteins and IR (hyperinsulinaemic-euglycaemic clamp) in 20 obese, premenopausal women. [Ferritin] was correlated with FA Ra (r = 0.65; P = 0.002) and IR (r = 0.57; P = 0.008); these relationships remained significant after controlling for body mass index and plasma [C-reactive protein] (a marker of systemic inflammation) in multiple regression analyses. We then stratified subjects into tertiles based on [ferritin] to compare subjects with 'High-ferritin' versus 'Low-ferritin'. Plasma [hepcidin] was more than fivefold greater (P < 0.05) in the High-ferritin versus Low-ferritin group, but there was no difference in plasma [C-reactive protein] between groups, indicating that the large difference in plasma [ferritin] reflects a difference in iron stores, not systemic inflammation. We found that FA Ra, adipose protein abundance of hormone-sensitive lipase and adipose triglyceride lipase, and IR were significantly greater in subjects with High-ferritin versus Low-ferritin (all P < 0.05). These data provide the first evidence linking iron and in vivo FA mobilization and suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability.

摘要

新发现

本研究的核心问题是什么?与一组铁储备相对较低且匹配良好的肥胖女性相比,全身铁储备相对较高的肥胖女性体内脂肪组织脂肪酸(FA)释放率是否升高?主要发现及其重要性是什么?与血浆[铁蛋白](全身铁储备的标志物)水平较低的肥胖女性相比,血浆[铁蛋白]水平较高的肥胖女性具有更强的FA动员能力、脂肪组织脂解激活能力和胰岛素抵抗(IR)。鉴于FA动员增加与IR的发展密切相关,这些发现表明铁储备升高可能通过增加全身FA的可利用性而导致肥胖中的IR。

摘要

肥胖中脂肪组织脂肪酸(FA)的高动员率与胰岛素抵抗(IR)相关。体外证据表明铁可刺激脂肪细胞的脂解作用,但铁是否与体内FA动员有关尚不清楚。我们假设血浆铁蛋白浓度([铁蛋白]),即身体铁储备的标志物,将与FA动员呈正相关。我们测量了20名肥胖的绝经前女性的[铁蛋白]、FA在体循环中的出现率(FA Ra;稳定同位素稀释法)、关键脂肪组织脂解蛋白和IR(高胰岛素-正常血糖钳夹法)。[铁蛋白]与FA Ra(r = 0.65;P = 0.002)和IR(r = 0.57;P = 0.008)相关;在多元回归分析中,在控制体重指数和血浆[C反应蛋白](全身炎症的标志物)后,这些关系仍然显著。然后我们根据[铁蛋白]将受试者分为三分位数,以比较“高铁蛋白”组和“低铁蛋白”组的受试者。高铁蛋白组的血浆[铁调素]比低铁蛋白组高五倍多(P < 0.05),但两组间血浆[C反应蛋白]无差异,这表明血浆[铁蛋白]的巨大差异反映的是铁储备的差异,而非全身炎症。我们发现,与低铁蛋白组相比,高铁蛋白组的受试者FA Ra、激素敏感性脂肪酶和脂肪甘油三酯脂肪酶的脂肪蛋白丰度以及IR均显著更高(均P < 0.05)。这些数据首次提供了铁与体内FA动员之间的联系证据,并表明铁储备升高可能通过增加全身FA的可利用性而导致肥胖中的IR。

相似文献

2
Factors regulating subcutaneous adipose tissue storage, fibrosis, and inflammation may underlie low fatty acid mobilization in insulin-sensitive obese adults.
Am J Physiol Endocrinol Metab. 2017 Oct 1;313(4):E429-E439. doi: 10.1152/ajpendo.00084.2017. Epub 2017 Jul 5.
3
Skeletal muscle ferritin abundance is tightly related to plasma ferritin concentration in adults with obesity.
Exp Physiol. 2020 Nov;105(11):1808-1814. doi: 10.1113/EP089010. Epub 2020 Sep 16.
5
Serum Ferritin Levels Are Associated with Adipose Tissue Dysfunction-Related Indices in Obese Adults.
Biol Trace Elem Res. 2023 Feb;201(2):636-643. doi: 10.1007/s12011-022-03198-3. Epub 2022 Mar 17.
6
Factors accounting for high ferritin levels in obesity.
Int J Obes (Lond). 2008 Nov;32(11):1665-9. doi: 10.1038/ijo.2008.154. Epub 2008 Sep 9.
7
Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals.
Gastroenterology. 2010 Sep;139(3):846-56, 856.e1-6. doi: 10.1053/j.gastro.2010.05.039. Epub 2010 May 25.
8
Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity.
Clin Nutr. 2017 Oct;36(5):1434-1439. doi: 10.1016/j.clnu.2016.09.022. Epub 2016 Sep 29.
9
Serum ferritin is associated with markers of insulin resistance in Japanese men but not in women.
Metabolism. 2013 Apr;62(4):561-7. doi: 10.1016/j.metabol.2012.07.025. Epub 2012 Oct 27.
10
Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.
Int J Obes (Lond). 2017 Aug;41(8):1288-1294. doi: 10.1038/ijo.2017.110. Epub 2017 May 3.

引用本文的文献

2
Iron homeostasis and insulin sensitivity: unraveling the complex interactions.
Rev Endocr Metab Disord. 2024 Oct;25(5):925-939. doi: 10.1007/s11154-024-09908-7. Epub 2024 Sep 17.
3
A New Concept in Antidiabetic Therapeutics: A Concerted Removal of Labile Iron and Intracellular Deposition of Zinc.
Diabetes Metab J. 2024 Jan;48(1):59-71. doi: 10.4093/dmj.2022.0292. Epub 2024 Jan 3.
4
Association Between Serum Ferritin Concentration and Risk of Adverse Maternal and Fetal Pregnancy Outcomes: A Retrospective Cohort Study.
Diabetes Metab Syndr Obes. 2022 Sep 19;15:2867-2876. doi: 10.2147/DMSO.S380408. eCollection 2022.
5
Adipose triglyceride lipase mediates lipolysis and lipid mobilization in response to iron-mediated negative energy balance.
iScience. 2022 Feb 17;25(3):103941. doi: 10.1016/j.isci.2022.103941. eCollection 2022 Mar 18.
6
Association between Serum Ferritin and Blood Lipids: Influence of Diabetes and hs-CRP Levels.
J Diabetes Res. 2020 Mar 24;2020:4138696. doi: 10.1155/2020/4138696. eCollection 2020.
7
Possible dysmetabolic hyperferritinemia in hyperinsulinemic horses.
Open Vet J. 2020 Jan;9(4):287-293. doi: 10.4314/ovj.v9i4.2. Epub 2019 Oct 21.
9
Iron Metabolism in Cancer.
Int J Mol Sci. 2018 Dec 27;20(1):95. doi: 10.3390/ijms20010095.

本文引用的文献

1
Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue.
Cell Metab. 2017 Nov 7;26(5):753-763.e7. doi: 10.1016/j.cmet.2017.09.004. Epub 2017 Oct 5.
2
Factors regulating subcutaneous adipose tissue storage, fibrosis, and inflammation may underlie low fatty acid mobilization in insulin-sensitive obese adults.
Am J Physiol Endocrinol Metab. 2017 Oct 1;313(4):E429-E439. doi: 10.1152/ajpendo.00084.2017. Epub 2017 Jul 5.
3
Iron homeostasis: An anthropocentric perspective.
J Biol Chem. 2017 Aug 4;292(31):12727-12734. doi: 10.1074/jbc.R117.781823. Epub 2017 Jun 14.
6
Iron primes 3T3-L1 adipocytes to a TLR4-mediated inflammatory response.
Nutrition. 2015 Oct;31(10):1266-74. doi: 10.1016/j.nut.2015.04.007. Epub 2015 May 5.
8
Insulin resistance modulates iron-related proteins in adipose tissue.
Diabetes Care. 2014 Apr;37(4):1092-100. doi: 10.2337/dc13-1602. Epub 2014 Feb 4.
9
Obesity alters adipose tissue macrophage iron content and tissue iron distribution.
Diabetes. 2014 Feb;63(2):421-32. doi: 10.2337/db13-0213. Epub 2013 Oct 15.
10
Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction.
J Lipid Res. 2013 Apr;54(4):953-65. doi: 10.1194/jlr.M032466. Epub 2013 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验