Suppr超能文献

海洋微生物宏基因组在时空上的采样。

Marine microbial metagenomes sampled across space and time.

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Limnology and Bio-Oceanography, University of Vienna, Vienna 1090, Austria.

出版信息

Sci Data. 2018 Sep 4;5:180176. doi: 10.1038/sdata.2018.176.

Abstract

Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems.

摘要

近年来,随着宏基因组数据的日益丰富,人们对海洋系统生态学的理解有了很大的进展,这些数据提供了特定地点和时间的微生物群落的身份、多样性和功能潜力的信息。在这里,我们提供了一个包含超过 5 太字节的宏基因组数据的数据集,这些数据来自跨越大西洋和太平洋的 610 个样本。一组宏基因组是在地球追踪考察(GEOTRACES)航次中收集的,它在每个站点的多个深度捕获了大的地理横剖面。第二组代表了两年的时间序列数据,每隔一个月从两个长期海洋采样点 ALOHA 和 BATS 的三个深度收集。这些宏基因组包含了来自各种细菌、古菌、真核生物和病毒的基因组信息。每个样本都有大量与之相关的物理、化学和生物测量值,这增强了数据的实用性。我们预计这些宏基因组将促进广泛的比较研究,这些研究旨在阐明海洋微生物生态系统的新方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5689/6122167/a23c085e4ffe/sdata2018176-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验