Suppr超能文献

微流控加工方法控制载姜黄素嵌段共聚物纳米粒子的药物释放性能。

Microfluidic Processing Approach to Controlling Drug Delivery Properties of Curcumin-Loaded Block Copolymer Nanoparticles.

机构信息

Department of Chemistry , University of Victoria , P.O. Box 3065, Victoria , British Columbia , Canada V8W 3V6.

出版信息

Mol Pharm. 2018 Oct 1;15(10):4517-4528. doi: 10.1021/acs.molpharmaceut.8b00529. Epub 2018 Sep 17.

Abstract

We apply gas-liquid microfluidic reactors containing flow-variable, high-shear "hot spots" to produce curcumin-loaded polymer nanoparticles (CUR-PNPs) comprised of poly(caprolactone)- block-poly(ethylene oxide) (PCL- b-PEO) block copolymers at various flow rates and CUR loading ratios. CUR-PNPs prepared using the conventional nanoprecipitation method (bulk method) showed decreased encapsulation efficiency and increased drug precipitation as the loading ratio increased. However, CUR-PNPs prepared by microfluidic manufacturing showed both increased encapsulation efficiency and increased drug loading as either the flow rate or the loading ratio increased. This enabled microfluidic CUR loading percentages of up to 30% to be achieved in this study, which to our knowledge is a record for block copolymer PNPs. As well, it is shown that increased flow rate of microfluidic manufacturing leads to decreased mean CUR-PNP sizes (down to ∼50 nm) and narrower size distributions, along with significantly different CUR release kinetics compared to CUR-PNPs prepared at slower flow rates. In vitro antiproliferation experiments against MDA-MB-231 cells give an average IC value of 24 μM for CUR-PNPs compared to 13 μM for free CUR at the same incubation time of 72 h. Compared to conventional bulk and single-phase microfluidic strategies, this unique two-phase reactor represents an exciting manufacturing platform for optimizing polymeric CUR nanomedicines though flow-directed shear processing.

摘要

我们应用含有可变流动、高剪切“热点”的气液微流反应器来制备载姜黄素的聚合物纳米粒子 (CUR-PNPs),这些纳米粒子由聚己内酯-嵌段-聚环氧乙烷 (PCL-b-PEO) 嵌段共聚物组成,其在不同的流速和 CUR 负载比下进行制备。使用传统的纳米沉淀法 ( bulk 方法) 制备的 CUR-PNPs 显示出随着负载比的增加,包封效率降低和药物沉淀增加。然而,通过微流制造制备的 CUR-PNPs 显示出随着流速或负载比的增加,包封效率和载药量都增加。这使得在本研究中能够实现高达 30%的微流 CUR 负载百分比,据我们所知,这是嵌段共聚物 PNPs 的记录。此外,研究表明,微流制造的流速增加会导致 CUR-PNP 平均粒径减小(降至约 50nm)和粒径分布变窄,与在较慢流速下制备的 CUR-PNPs 相比,CUR 释放动力学也有明显差异。体外对 MDA-MB-231 细胞的增殖抑制实验表明,与游离 CUR 相比,CUR-PNPs 的平均 IC 值为 24 μM,而在相同的 72 小时孵育时间内,游离 CUR 的 IC 值为 13 μM。与传统的 bulk 和单相微流策略相比,这种独特的两相反应器代表了一种通过流导向剪切处理来优化聚合物 CUR 纳米药物的令人兴奋的制造平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验