Lekscha Jaqueline, Donner Reik V
Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany.
Chaos. 2018 Aug;28(8):085702. doi: 10.1063/1.5023860.
Analyzing data from paleoclimate archives such as tree rings or lake sediments offers the opportunity of inferring information on past climate variability. Often, such data sets are univariate and a proper reconstruction of the system's higher-dimensional phase space can be crucial for further analyses. In this study, we systematically compare the methods of time delay embedding and differential embedding for phase space reconstruction. Differential embedding relates the system's higher-dimensional coordinates to the derivatives of the measured time series. For implementation, this requires robust and efficient algorithms to estimate derivatives from noisy and possibly non-uniformly sampled data. For this purpose, we consider several approaches: (i) central differences adapted to irregular sampling, (ii) a generalized version of discrete Legendre coordinates, and (iii) the concept of Moving Taylor Bayesian Regression. We evaluate the performance of differential and time delay embedding by studying two paradigmatic model systems-the Lorenz and the Rössler system. More precisely, we compare geometric properties of the reconstructed attractors to those of the original attractors by applying recurrence network analysis. Finally, we demonstrate the potential and the limitations of using the different phase space reconstruction methods in combination with windowed recurrence network analysis for inferring information about past climate variability. This is done by analyzing two well-studied paleoclimate data sets from Ecuador and Mexico. We find that studying the robustness of the results when varying the analysis parameters is an unavoidable step in order to make well-grounded statements on climate variability and to judge whether a data set is suitable for this kind of analysis.
分析来自树木年轮或湖泊沉积物等古气候档案的数据,为推断过去气候变化的信息提供了机会。通常,此类数据集是单变量的,对系统高维相空间进行适当重建对于进一步分析可能至关重要。在本研究中,我们系统地比较了用于相空间重建的时间延迟嵌入和微分嵌入方法。微分嵌入将系统的高维坐标与测量时间序列的导数相关联。为了实现这一点,需要强大而有效的算法来从有噪声且可能非均匀采样的数据中估计导数。为此,我们考虑了几种方法:(i)适用于不规则采样的中心差分,(ii)离散勒让德坐标的广义版本,以及(iii)移动泰勒贝叶斯回归的概念。我们通过研究两个典型模型系统——洛伦兹系统和罗斯勒系统,来评估微分嵌入和时间延迟嵌入的性能。更确切地说,我们通过应用递归网络分析,将重建吸引子的几何特性与原始吸引子的几何特性进行比较。最后,我们展示了将不同的相空间重建方法与加窗递归网络分析相结合用于推断过去气候变化信息的潜力和局限性。这是通过分析来自厄瓜多尔和墨西哥的两个经过充分研究的古气候数据集来完成的。我们发现,为了对气候变化做出有充分依据的陈述并判断一个数据集是否适合这种分析,研究在改变分析参数时结果的稳健性是一个不可避免的步骤。