Park Youngmin, Ermentrout G Bard
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Chaos. 2018 Aug;28(8):083123. doi: 10.1063/1.5029841.
A rigorous bridge between spiking-level and macroscopic quantities is an on-going and well-developed story for asynchronously firing neurons, but focus has shifted to include neural populations exhibiting varying synchronous dynamics. Recent literature has used the Ott-Antonsen ansatz (2008) to great effect, allowing a rigorous derivation of an order parameter for large oscillator populations. The ansatz has been successfully applied using several models including networks of Kuramoto oscillators, theta models, and integrate-and-fire neurons, along with many types of network topologies. In the present study, we take a converse approach: given the mean field dynamics of slow synapses, we predict the synchronization properties of finite neural populations. The slow synapse assumption is amenable to averaging theory and the method of multiple timescales. Our proposed theory applies to two heterogeneous populations of excitatory -dimensional and inhibitory -dimensional oscillators with homogeneous synaptic weights. We then demonstrate our theory using two examples. In the first example, we take a network of excitatory and inhibitory theta neurons and consider the case with and without heterogeneous inputs. In the second example, we use Traub models with calcium for the excitatory neurons and Wang-Buzsáki models for the inhibitory neurons. We accurately predict phase drift and phase locking in each example even when the slow synapses exhibit non-trivial mean-field dynamics.
对于异步发放的神经元,在发放水平和宏观量之间建立严格的桥梁是一个持续且发展良好的课题,但研究重点已转向包含呈现不同同步动力学的神经群体。近期文献大量运用了奥特 - 安东森假设(2008年),从而能够严格推导出大振荡群体的一个序参量。该假设已成功应用于多种模型,包括库拉托莫振荡器网络、theta模型、积分发放神经元,以及多种类型的网络拓扑结构。在本研究中,我们采用相反的方法:给定慢突触的平均场动力学,我们预测有限神经群体的同步特性。慢突触假设适用于平均理论和多时间尺度方法。我们提出的理论适用于具有均匀突触权重的两类异质群体,即兴奋性(N)维振荡器和抑制性(M)维振荡器。然后我们用两个例子来证明我们的理论。在第一个例子中,我们采用一个兴奋性和抑制性theta神经元网络,并考虑有无异质输入的情况。在第二个例子中,我们对兴奋性神经元使用带钙的特劳布模型,对抑制性神经元使用王 - 布萨克模型。即使慢突触呈现非平凡的平均场动力学,我们也能在每个例子中准确预测相位漂移和相位锁定。