Manikandan K, Vishnu Priya N, Senthilvelan M, Sankaranarayanan R
Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.
Department of Mathematics, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Chaos. 2018 Aug;28(8):083103. doi: 10.1063/1.5039901.
We derive dark and antidark soliton solutions of a parity-time reversal -invariant variable coefficients nonlocal nonlinear Schrödinger (NNLS) equation. We map the considered equation into a defocusing -invariant NNLS equation with a constraint between dispersion, nonlinearity, and gain/loss parameters. We show that the considered system is -invariant only when the dispersion and nonlinearity coefficients are even functions and gain/loss coefficient is an odd function. The characteristics of the constructed dark soliton solutions are investigated with four different forms of dispersion parameters, namely, (1) constant, (2) periodically distributed, (3) exponentially distributed, and (4) periodically and exponentially distributed dispersion parameter. We analyze in detail how the nonlocal dark soliton profiles get deformed in the plane wave background with these dispersion parameters.
我们推导了一个宇称-时间反演不变的变系数非局部非线性薛定谔(NNLS)方程的暗孤子解和反暗孤子解。我们将所考虑的方程映射为一个具有色散、非线性和增益/损耗参数之间约束的散焦不变NNLS方程。我们表明,仅当色散系数和非线性系数为偶函数且增益/损耗系数为奇函数时,所考虑的系统才是不变的。利用四种不同形式的色散参数研究了所构造暗孤子解的特性,即:(1)常数,(2)周期性分布,(3)指数分布,以及(4)周期性和指数分布的色散参数。我们详细分析了在这些色散参数下非局部暗孤子轮廓在平面波背景中是如何变形的。