Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.
mBio. 2018 Sep 4;9(5):e00858-18. doi: 10.1128/mBio.00858-18.
The phosphoenolpyruvate phosphotransferase system (PTS) is a well-conserved, multicomponent phosphotransfer cascade that coordinates the bacterial response to carbohydrate availability through direct interactions of its components with protein targets. One such component, glucose-specific enzyme IIA (EIIA), is a master regulator that coordinates bacterial metabolism, nutrient uptake, and behavior by direct interactions with cytoplasmic and membrane-associated protein partners. Here, we show that an amphipathic helix (AH) at the N terminus of EIIA serves as a membrane association domain that is dispensable for interactions with cytoplasmic partners but essential for regulation of integral membrane protein partners. By deleting this AH, we reveal previously unappreciated opposing regulatory functions for EIIA at the membrane and in the cytoplasm and show that these opposing functions are active in the laboratory biofilm and the mammalian intestine. Phosphotransfer through the PTS proceeds in the absence of the EIIA AH, while PTS-dependent sugar transport is blocked. This demonstrates that the AH couples phosphotransfer to sugar transport and refutes the paradigm of EIIA as a simple phosphotransfer component in PTS-dependent transport. Our findings show that EIIA, a central regulator of pathogen metabolism, contributes to optimization of bacterial physiology by integrating metabolic cues arising from the cytoplasm with nutritional cues arising from the environment. Because pathogen carbon metabolism alters the intestinal environment, we propose that it may be manipulated to minimize the metabolic cost of intestinal infection. The phosphoenolpyruvate phosphotransferase system (PTS) is a well-conserved, multicomponent phosphotransfer cascade that regulates cellular physiology and virulence in response to nutritional signals. Glucose-specific enzyme IIA (EIIA), a component of the PTS, is a master regulator that coordinates bacterial metabolism, nutrient uptake, and behavior by direct interactions with protein partners. We show that an amphipathic helix (AH) at the N terminus of EIIA serves as a membrane association domain that is dispensable for interactions with cytoplasmic partners but essential for regulation of integral membrane protein partners. By removing this amphipathic helix, hidden, opposing roles for cytoplasmic partners of EIIA in both biofilm formation and metabolism within the mammalian intestine are revealed. This study defines a novel paradigm for AH function in integrating opposing regulatory functions in the cytoplasm and at the bacterial cell membrane and highlights the PTS as a target for metabolic modulation of the intestinal environment.
磷酸烯醇丙酮酸磷酸转移酶系统(PTS)是一个高度保守的多组分磷酸转移级联,通过其组分与蛋白质靶标的直接相互作用,协调细菌对碳水化合物可用性的反应。其中一种成分,葡萄糖特异性酶 IIA(EIIA),是一个主调控因子,通过与细胞质和膜相关蛋白伴侣的直接相互作用,协调细菌代谢、营养吸收和行为。在这里,我们表明,EIIA 的 N 端的一个两亲性螺旋(AH)作为一个膜结合结构域,对于与细胞质伴侣的相互作用不是必需的,但对于调节完整的膜蛋白伴侣是必需的。通过删除这个 AH,我们揭示了以前未被认识到的 EIIA 在膜中和细胞质中的相反调节功能,并表明这些相反的功能在实验室生物膜和哺乳动物肠道中是活跃的。在没有 EIIA AH 的情况下,PTS 中的磷酸转移仍在进行,而 PTS 依赖的糖运输被阻断。这表明 AH 将磷酸转移与糖运输偶联,并反驳了 EIIA 作为 PTS 依赖的运输中简单磷酸转移成分的范式。我们的发现表明,作为病原体代谢的中央调节剂,EIIA 通过整合来自细胞质的代谢信号和来自环境的营养信号,有助于优化细菌的生理机能。由于病原体的碳代谢改变了肠道环境,我们提出可以操纵它来最小化肠道感染的代谢成本。磷酸烯醇丙酮酸磷酸转移酶系统(PTS)是一个高度保守的多组分磷酸转移级联,通过营养信号调节细胞生理和毒力。葡萄糖特异性酶 IIA(EIIA)是 PTS 的一个组成部分,是一个主调控因子,通过与蛋白伴侣的直接相互作用,协调细菌代谢、营养摄取和行为。我们表明,EIIA 的 N 端的一个两亲性螺旋(AH)作为一个膜结合结构域,对于与细胞质伴侣的相互作用不是必需的,但对于调节完整的膜蛋白伴侣是必需的。通过去除这个两亲性螺旋,揭示了 EIIA 的细胞质伴侣在生物膜形成和哺乳动物肠道内代谢中的隐藏的、相反的作用。这项研究定义了一个新的 AH 功能范例,即在细胞质和细菌细胞膜中整合相反的调节功能,并强调了 PTS 是代谢调节肠道环境的一个靶点。