Suppr超能文献

利用电子鼻鉴别不同类别的替代草药。

Discrimination between Alternative Herbal Medicines from Different Categories with the Electronic Nose.

机构信息

State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2018 Sep 4;18(9):2936. doi: 10.3390/s18092936.

Abstract

As alternative herbal medicine gains soar in popularity around the world, it is necessary to apply a fast and convenient means for classifying and evaluating herbal medicines. In this work, an electronic nose system with seven classification algorithms is used to discriminate between 12 categories of herbal medicines. The results show that these herbal medicines can be successfully classified, with support vector machine (SVM) and linear discriminant analysis (LDA) outperforming other algorithms in terms of accuracy. When principal component analysis (PCA) is used to lower the number of dimensions, the time cost for classification can be reduced while the data is visualized. Afterwards, conformal predictions based on 1NN (1-Nearest Neighbor) and 3NN (3-Nearest Neighbor) (CP-1NN and CP-3NN) are introduced. CP-1NN and CP-3NN provide additional, yet significant and reliable, information by giving the confidence and credibility associated with each prediction without sacrificing of accuracy. This research provides insight into the construction of a herbal medicine flavor library and gives methods and reference for future works.

摘要

随着世界各地对替代草药的需求不断增长,有必要寻求一种快速便捷的方法来对草药进行分类和评估。在这项工作中,我们使用了一个带有七种分类算法的电子鼻系统来区分 12 种草药类别。结果表明,这些草药可以被成功分类,其中支持向量机(SVM)和线性判别分析(LDA)在准确性方面优于其他算法。当使用主成分分析(PCA)降低维度数量时,分类的时间成本可以降低,同时数据也可以可视化。然后,引入了基于 1NN(1-最近邻)和 3NN(3-最近邻)的一致性预测(CP-1NN 和 CP-3NN)。CP-1NN 和 CP-3NN 通过提供与每个预测相关的置信度和可信度,而不牺牲准确性,提供了额外的、重要的、可靠的信息。这项研究为构建草药风味库提供了思路,并为未来的工作提供了方法和参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f7/6165400/a3f3f9949e25/sensors-18-02936-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验