Department of Applied Physics , Aalto University , P.O. Box 11100, Aalto FI-00076 , Finland.
National Institute for Materials Science (NIMS) 1-2-1 Sengen , Tsukuba Ibaraki 305-0047 , Japan.
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34718-34726. doi: 10.1021/acsami.8b09203. Epub 2018 Sep 26.
The understanding and control of the buried interface between functional materials in optoelectronic devices is key to improving device performance. We combined atomic resolution scanning probe microscopy with first-principles calculations to characterize the technologically relevant organic/inorganic interface structure between pentacene molecules and the TiO anatase (101) surface. A multipass atomic force microscopy imaging technique overcomes the technical challenge of imaging simultaneously the corrugated anatase substrate, molecular adsorbates, monolayers, and bilayers at the same level of detail. Submolecular resolution images revealed the orientation of the adsorbates with respect to the substrate and allowed direct insights into interface formation. Pentacene molecules were found to physisorb parallel to the anatase substrate in the first contact layer, passivating the surface and promoting bulk-like growth in further organic layers. While molecular electronic states were not significantly hybridized by the substrate, simulations predicted localized pathways for molecule-surface charge injection. The localized states were associated with the molecular lowest unoccupied molecular orbital inside the oxide conduction band, pointing to efficient transfer of photo-induced electron charge carriers across this interface in prospective photovoltaic devices. In uncovering the atomic arrangement and favorable electronic properties of the pentacene/anatase interface, our findings testify to the maturity and analytic power of our methodology in further studies of organic/inorganic interfaces.
理解和控制光电设备中功能材料的埋入界面是提高器件性能的关键。我们结合原子分辨扫描探针显微镜和第一性原理计算,对芘分子与锐钛矿 TiO2(101) 表面之间的相关有机/无机界面结构进行了表征。多次原子力显微镜成像技术克服了同时以相同细节水平对波纹状锐钛矿衬底、分子吸附物、单层和双层成像的技术挑战。亚分子分辨率图像揭示了吸附物相对于衬底的取向,并允许直接了解界面形成。在第一层接触中,发现芘分子以平行于锐钛矿衬底的方式物理吸附,钝化表面并促进进一步的有机层中类似体相的生长。虽然分子电子态没有被衬底显著杂化,但模拟预测了分子-表面电荷注入的局部途径。这些局域态与氧化物导带内分子最低未占据分子轨道有关,这表明在潜在的光伏器件中,光致电子电荷载流子可以有效地通过该界面转移。在揭示芘/锐钛矿界面的原子排列和有利的电子特性方面,我们的发现证明了我们的方法在进一步研究有机/无机界面方面的成熟度和分析能力。