Stetsovych Oleksandr, Todorović Milica, Shimizu Tomoko K, Moreno César, Ryan James William, León Carmen Pérez, Sagisaka Keisuke, Palomares Emilio, Matolín Vladimír, Fujita Daisuke, Perez Ruben, Custance Oscar
1] National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan [2] Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, Praha 8, Czech Republic.
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain.
Nat Commun. 2015 Jun 29;6:7265. doi: 10.1038/ncomms8265.
Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials.
锐钛矿是能量收集应用和催化装置中的关键材料。在原子尺度上准确表征这种可还原氧化物的方法对于探索卓越性能以推动技术发展至关重要。在此,我们结合原子力显微镜(AFM)和扫描隧道显微镜(STM),并辅以第一性原理计算,用于在锐钛矿(101)表面同时成像和明确识别原子种类。我们证明动态AFM-STM操作能够在材料的带隙内实现原子分辨率成像。基于从计算和实验中提取的关键区别特征,我们确定了最常见表面缺陷的候选者。我们的结果为理解表面过程(如金属掺杂剂和光活性分子的吸附)铺平了道路,这些过程对于锐钛矿的催化和光伏应用至关重要,并展示了动态AFM-STM在宽带隙材料表征方面的潜力。