Manukyan Viktoria, Durieux Brigitte N, Gramling Cailin J, Clarfeld Laurence A, Rizzo Donna M, Eppstein Margaret J, Gramling Robert
1 Department of Family Medicine and Computer Science, University of Vermont , Burlington, Vermont.
2 Department of Romance Languages and Linguistics, University of Vermont , Burlington, Vermont.
J Palliat Med. 2018 Sep 5. doi: 10.1089/jpm.2018.0269.
Automating conversation analysis in the natural clinical setting is essential to scale serious illness communication research to samples that are large enough for traditional epidemiological studies. Our objective is to automate the identification of pauses in conversations because these are important linguistic targets for evaluating dynamics of speaker involvement and turn-taking, listening and human connection, or distraction and disengagement.
We used 354 audio recordings of serious illness conversations from the multisite Palliative Care Communication Research Initiative cohort study.
SETTING/SUBJECTS: Hospitalized people with advanced cancer seen by the palliative care team.
We developed a Random Forest machine learning (ML) algorithm to detect Conversational Pauses of two seconds or longer. We triple-coded 261 minutes of audio with human coders to establish a gold standard for evaluating ML performance characteristics.
ML automatically identified Conversational Pauses with a sensitivity of 90.5 and a specificity of 94.5.
ML is a valid method for automatically identifying Conversational Pauses in the natural acoustic setting of inpatient serious illness conversations.
在自然临床环境中实现对话分析自动化,对于将重症疾病沟通研究扩展到规模足以开展传统流行病学研究的样本至关重要。我们的目标是实现对话中停顿的自动化识别,因为这些停顿是评估说话者参与度和话轮转换、倾听与人际联系,或分心与脱离接触动态的重要语言指标。
我们使用了多中心姑息治疗沟通研究倡议队列研究中354份重症疾病对话的音频记录。
设置/研究对象:姑息治疗团队诊治的晚期癌症住院患者。
我们开发了一种随机森林机器学习(ML)算法,以检测持续两秒或更长时间的对话停顿。我们让人工编码员对261分钟的音频进行了三次编码,以建立评估ML性能特征的金标准。
ML自动识别对话停顿的灵敏度为90.5,特异度为94.5。
ML是在住院重症疾病对话的自然声学环境中自动识别对话停顿的有效方法。