Suppr超能文献

从单深度视图进行密集三维物体重建

Dense 3D Object Reconstruction from a Single Depth View.

作者信息

Yang Bo, Rosa Stefano, Markham Andrew, Trigoni Niki, Wen Hongkai

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2820-2834. doi: 10.1109/TPAMI.2018.2868195. Epub 2018 Sep 3.

Abstract

In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of 3D encoder-decoder and the conditional adversarial networks framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.

摘要

在本文中,我们提出了一种新颖的方法——3D-RecGAN++,它使用生成对抗网络从单个任意深度视图重建给定物体的完整三维结构。与现有工作通常需要同一物体的多个视图或类别标签来恢复完整的三维几何形状不同,所提出的3D-RecGAN++仅将物体深度视图的体素网格表示作为输入,并能够通过恢复遮挡/缺失区域生成分辨率高达256的完整三维占用网格。关键思想是将三维编码器-解码器的生成能力与条件对抗网络框架相结合,以在高维体素空间中推断物体准确且细粒度的三维结构。在大型合成数据集和真实世界的Kinect数据集上进行的大量实验表明,所提出的3D-RecGAN++在单视图三维物体重建方面显著优于现有技术,并且能够重建未见类型的物体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验