Suppr超能文献

髋关节助力的机械设计与控制策略。

Mechanical Design and Control Strategy for Hip Joint Power Assisting.

机构信息

College of Engineering, Peking University, Beijing 100870, China.

National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.

出版信息

J Healthc Eng. 2018 Aug 15;2018:9712926. doi: 10.1155/2018/9712926. eCollection 2018.

Abstract

The basic requirements for mechanical design and control strategy are adapting to human joint movements and building an interaction model between human and robot. In this paper, a 3-UPS parallel mechanism is adopted to realize that the instantaneous rotation center of the assistive system coincides with human joint movement center, and a force sensory system is used to detect human movement intention and build the modeling of control strategy based on the interactive force. Then, based on the constructed experimental platform, the feasibility of movement intention detection and power assisting are verified through the experimental results.

摘要

机械设计和控制策略的基本要求是适应人体关节运动,并构建人机交互模型。本文采用 3-UPS 并联机构实现辅助系统的瞬时旋转中心与人体关节运动中心重合,并采用力觉传感器系统检测人体运动意图,建立基于交互力的控制策略建模。然后,基于构建的实验平台,通过实验结果验证了运动意图检测和动力辅助的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ded/6114247/e555f2c92fa3/JHE2018-9712926.001.jpg

相似文献

1
Mechanical Design and Control Strategy for Hip Joint Power Assisting.
J Healthc Eng. 2018 Aug 15;2018:9712926. doi: 10.1155/2018/9712926. eCollection 2018.
2
[Kinematics and workspace analysis of a spherical exoskeleton parallel mechanism].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Apr 25;36(2):213-222. doi: 10.7507/1001-5515.201806024.
3
Effect of timing of hip extension assistance during loaded walking with a soft exosuit.
J Neuroeng Rehabil. 2016 Oct 3;13(1):87. doi: 10.1186/s12984-016-0196-8.
4
Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
IEEE Trans Neural Syst Rehabil Eng. 2017 Aug;25(8):1125-1134. doi: 10.1109/TNSRE.2016.2583464. Epub 2016 Jun 22.
8
Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:252-257. doi: 10.1109/ICORR.2017.8009255.
9
Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
Biomed Mater Eng. 2015;26 Suppl 1:S665-72. doi: 10.3233/BME-151358.
10
Manipulability Inclusive Principle for Assistive Result Evaluation of Assistive Mechanism.
J Healthc Eng. 2018 Sep 24;2018:2767129. doi: 10.1155/2018/2767129. eCollection 2018.

本文引用的文献

1
A Real-Time Lift Detection Strategy for a Hip Exoskeleton.
Front Neurorobot. 2018 Apr 12;12:17. doi: 10.3389/fnbot.2018.00017. eCollection 2018.
2
Biologically-inspired soft exosuit.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650455. doi: 10.1109/ICORR.2013.6650455.
3
Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments.
IEEE Trans Neural Syst Rehabil Eng. 2012 Jan;20(1):68-77. doi: 10.1109/TNSRE.2011.2176960.
4
Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals.
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):652-9. doi: 10.1109/TNSRE.2011.2163083. Epub 2011 Oct 3.
5
Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:462-6. doi: 10.1109/IEMBS.2010.5626191.
6
Robot assisted gait training with active leg exoskeleton (ALEX).
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8. doi: 10.1109/TNSRE.2008.2008280.
7
Parallel man-machine training in development of EEG-based cursor control.
IEEE Trans Rehabil Eng. 2000 Jun;8(2):203-5. doi: 10.1109/86.847816.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验