Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
Sci Total Environ. 2018 Dec 1;643:1248-1256. doi: 10.1016/j.scitotenv.2018.06.244. Epub 2018 Jul 4.
High spatial resolution urban population dataset is increasingly required for sustainable urban planning and management. Dasymetric mapping is an effective approach to create such dataset. However, the created gridded total population datasets usually have limitation for urban analysis in developing countries as they usually underestimate urban population because of the strong urban-rural difference. In this study, we aimed to create a dataset of gridded urban population with 1 km resolution in China in year 2000 and 2010. We proposed an index of urban nighttime light (UNTL) by integrating radiance corrected DMSP nighttime light (RcNTL) and urban land, which is then used as weight to disaggregate county-level urban population. The validation using township population in Beijing as references shows reasonable accuracy with a mean relative error of 38% and a R of 68%. Using only two widely available datasets (RcNTL and urban land), the proposed method is simple and computing efficient compared with methods using multiple geospatial data (e.g., land use and land cover, distance to city center, slope) and that combined with remote sensing imagery. As the used two auxiliary datasets are accessible globally, the method has great potential to produce similar urban population dataset for other developing countries where fine scale census population datasets are scarce. The produced urban population dataset is valuable for enriching our understanding of the urbanization process and designing sustainable urban planning and management strategies in China.
高空间分辨率的城市人口数据集对于可持续的城市规划和管理越来越重要。 基于密度的制图方法是创建此类数据集的有效方法。 然而,由于城乡差异很大,为发展中国家创建的网格化总人口数据集通常对城市分析具有局限性,因为它们通常低估了城市人口。 在这项研究中,我们旨在创建一个 2000 年和 2010 年中国 1km 分辨率的网格化城市人口数据集。我们提出了一个夜间灯光指数(UNTL),通过整合辐射校正后的 DMSP 夜间灯光(RcNTL)和城市土地,然后将其用作离散县级城市人口的权重。 使用北京市乡镇人口作为参考的验证表明,该方法具有合理的精度,平均相对误差为 38%,R 为 68%。与使用多个地理空间数据(例如土地利用和土地覆盖、到市中心的距离、坡度)和结合遥感图像的方法相比,该方法仅使用两个广泛可用的数据集(RcNTL 和城市土地),方法简单且计算效率高。 由于使用的两个辅助数据集在全球范围内都可以获得,因此该方法具有为其他缺乏精细尺度普查人口数据集的发展中国家生成类似城市人口数据集的巨大潜力。生成的城市人口数据集对于丰富我们对城市化进程的理解以及设计中国可持续的城市规划和管理策略非常有价值。