Suppr超能文献

在多变量预测模型的发展中纳入导管原位癌(DCIS)评分,以预测 DCIS 切除后的复发情况。

Including the Ductal Carcinoma-In-Situ (DCIS) Score in the Development of a Multivariable Prediction Model for Recurrence After Excision of DCIS.

机构信息

University of Toronto, Toronto, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.

University of Toronto, Toronto, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.

出版信息

Clin Breast Cancer. 2019 Feb;19(1):35-46. doi: 10.1016/j.clbc.2018.07.018. Epub 2018 Jul 29.

Abstract

INTRODUCTION

Individual prediction of local recurrence (LR) risk after breast-conserving surgery (BCS) for ductal carcinoma-in-situ (DCIS) is needed to identify women at low risk, for whom radiotherapy may be omitted. PATIENTS AND METHODS: Three predictive models of LR-clinicopathologic factors (CPF) alone; CPF + estrogen receptor (ER) + human epidermal growth factor receptor 2 (HER2); and CPF + DCIS score (DS)-were developed among 1102 cases of DCIS in patients with complete covariate and outcome data. Categorizations of discrete variables and transformations of continuous variables were examined in Cox models; 2-way interactions and interactions with time were assessed. Internal validation was performed by bootstrapping. Individual predicted 10-year LR risks were computed from covariate values, estimated regression parameters, and estimated baseline survival function. Accuracy was assessed by c statistics and calibration plots.

RESULTS

The strongest prediction model incorporated CPF + DS. The c statistics for CPF + DS, CPF + ER + HER2, or CPF-alone models were 0.7025, 0.6879, and 0.6825, respectively. The CPF + DS model was better calibrated at predicting low (≤ 10%) individual 10-year LR risks after BCS alone than those incorporating CPF + ER + HER2 or CPF alone, evidenced by c statistics and plots of observed by predicted risks. Among women aged ≥ 50 with no adverse CPF, the CPF + DS model identified the greatest proportion of women (62.3%) with predicted individual 10-year LR ≤ 10% without radiotherapy compared to the CPF + ER + HER2 (50.9%) or CPF alone (46.5%) models.

CONCLUSION

Individual prediction of LR incorporating DS is more accurate and identifies a higher proportion of women with low predicted risk of LR after BCS alone, for whom radiotherapy may be omitted.

摘要

简介

为了识别低危患者,对于这些患者,可能可以省略放射治疗,因此需要对接受保乳手术(BCS)治疗的导管原位癌(DCIS)患者的局部复发(LR)风险进行个体预测。

患者和方法

在具有完整协变量和结局数据的 1102 例 DCIS 患者中,开发了三种 LR 临床病理因素(CPF)预测模型(CPF 单独、CPF+雌激素受体(ER)+人表皮生长因子受体 2(HER2)和 CPF+DCIS 评分(DS))。在 Cox 模型中检查了离散变量的分类和连续变量的转换;评估了 2 个方向的相互作用和与时间的相互作用。通过自举法进行内部验证。根据协变量值、估计的回归参数和估计的基线生存函数,计算出患者 10 年 LR 风险的个体预测值。通过 C 统计量和校准图评估准确性。

结果

最强的预测模型纳入了 CPF+DS。CPF+DS、CPF+ER+HER2 或 CPF 单独模型的 C 统计量分别为 0.7025、0.6879 和 0.6825。CPF+DS 模型在预测单独接受 BCS 治疗的患者的低(≤10%)个体 10 年 LR 风险方面的校准效果更好,比纳入 CPF+ER+HER2 或 CPF 单独模型的效果更好,这一点从 C 统计量和观察到的风险与预测到的风险的关系图中可以看出。在年龄≥50 岁且无不良 CPF 的女性中,CPF+DS 模型比 CPF+ER+HER2(50.9%)或 CPF 单独模型(46.5%)更能确定最大比例的女性(62.3%)的个体 10 年 LR 预测值≤10%,无需接受放射治疗。

结论

纳入 DS 的 LR 个体预测更准确,并确定了更高比例的单独接受 BCS 治疗的患者 LR 复发风险较低,这些患者可能可以省略放射治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验